摘要
The estimates of the high-dimensional volatility matrix based on high-frequency data play a pivotal role in many financial applications.However,most existing studies have been built on the sub-Gaussian and cross-sectional independence assumptions of microstructure noise,which are typically violated in the financial markets.In this paper,the authors proposed a new robust volatility matrix estimator,with very mild assumptions on the cross-sectional dependence and tail behaviors of the noises,and demonstrated that it can achieve the optimal convergence rate n-1/4.Furthermore,the proposed model offered better explanatory and predictive powers by decomposing the estimator into low-rank and sparse components,using an appropriate regularization procedure.Simulation studies demonstrated that the proposed estimator outperforms its competitors under various dependence structures of microstructure noise.Additionally,an extensive analysis of the high-frequency data for stocks in the Shenzhen Stock Exchange of China demonstrated the practical effectiveness of the estimator.
基金
supported by the National Natural Science Foundation of China under Grant Nos.72271232,71873137
the MOE Project of Key Research Institute of Humanities and Social Sciences under Grant No.22JJD110001
the support of Public Computing Cloud
Renmin University of China。