To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carri...To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carried out. It was found that in the early period of solidification, the dendrite breakages led to a fine primary phase. When dendrites grew coarsely, the effect of ripening on grain size overwhelmed that of dendrite breakage. It was also found that the high cooling rate favored large nucleation rate, and led to a fine primary phase. But high cooling rate also made the growth rate of the dendrite arm, which prevented the dendrite arm from being sheared off. Therefore there were a suitable stirring time and suitable cooling rate to obtain the best rheo die-casting structure. Qualified semisolid A356 aluminum alloy was successfully manufactured with short time EMS.展开更多
The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the ...The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the trapped air in the mold cavity,while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting.At the same time,due to the shot speed and the casting pressure reduced in half,the service life of the die is prolonged and the productivity is enhanced,as well.Vacuum die-casting process is of great signif icance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.展开更多
Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum wheels are currently used in many models and are ...Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum wheels are currently used in many models and are produced usually by low pressure assisted gravity casting. Important property requirements are fatigue strength, pressure tightness, tensile strength, impact resistance, and corrosion resistance. Many attempts have been made to convert aluminum road wheels to magnesium. Race cars and some of the high end models (Porsche, Ferrari, etc.) have used magnesium wheels. These wheels have been gravity cast or forged. Viable corrosion protection systems have been developed and magnesium wheels have been used with success on these models. To use magnesium on more modest models is a challenge due to cost issues. Higher productivity casting processes or more cost effective coating systems need to be utilized. The project consists of selecting magnesium alloys for road wheels, examining the possible cost effective casting processes and corrosion protection systems, evaluating the cost per one wheel and comparing it to aluminum wheel costs. The wheels will also be compared with respect to fatigue and impact properties, pressure tightness, and corrosion.展开更多
文摘To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carried out. It was found that in the early period of solidification, the dendrite breakages led to a fine primary phase. When dendrites grew coarsely, the effect of ripening on grain size overwhelmed that of dendrite breakage. It was also found that the high cooling rate favored large nucleation rate, and led to a fine primary phase. But high cooling rate also made the growth rate of the dendrite arm, which prevented the dendrite arm from being sheared off. Therefore there were a suitable stirring time and suitable cooling rate to obtain the best rheo die-casting structure. Qualified semisolid A356 aluminum alloy was successfully manufactured with short time EMS.
文摘The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the trapped air in the mold cavity,while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting.At the same time,due to the shot speed and the casting pressure reduced in half,the service life of the die is prolonged and the productivity is enhanced,as well.Vacuum die-casting process is of great signif icance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.
文摘Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum wheels are currently used in many models and are produced usually by low pressure assisted gravity casting. Important property requirements are fatigue strength, pressure tightness, tensile strength, impact resistance, and corrosion resistance. Many attempts have been made to convert aluminum road wheels to magnesium. Race cars and some of the high end models (Porsche, Ferrari, etc.) have used magnesium wheels. These wheels have been gravity cast or forged. Viable corrosion protection systems have been developed and magnesium wheels have been used with success on these models. To use magnesium on more modest models is a challenge due to cost issues. Higher productivity casting processes or more cost effective coating systems need to be utilized. The project consists of selecting magnesium alloys for road wheels, examining the possible cost effective casting processes and corrosion protection systems, evaluating the cost per one wheel and comparing it to aluminum wheel costs. The wheels will also be compared with respect to fatigue and impact properties, pressure tightness, and corrosion.