We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the proce...We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
In this article,we consider the long-time behavior of extensible beams with nonlocal weak damping:ε(t)u_(tt)+Δ^(2)u-m(‖▽u‖^(2))Δu+‖u_(t)‖^(p_(u_(t)))+f(u)=h,whereε(t)is a decreasing function vanishing at infi...In this article,we consider the long-time behavior of extensible beams with nonlocal weak damping:ε(t)u_(tt)+Δ^(2)u-m(‖▽u‖^(2))Δu+‖u_(t)‖^(p_(u_(t)))+f(u)=h,whereε(t)is a decreasing function vanishing at infinity.Within the theory of process on time-dependent spaces,we investigate the existence of the time-dependent attractor by using the Condition(C_(t))method and more detailed estimates.The results obtained essentially improve and complete some previous works.展开更多
This article investigates the property of linearly dependence of solutions f(z) and f(z + 2πi) for higher order linear differential equations with entire periodic coefficients.
We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger ...We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.展开更多
Position-dependent-mass systems are of great importance in many physical situations,such as the transport of charge carriers in semiconductors with non-uniform composition and in the theory of many-body interactions i...Position-dependent-mass systems are of great importance in many physical situations,such as the transport of charge carriers in semiconductors with non-uniform composition and in the theory of many-body interactions in condensed matter.Here we investigate,numerically and analytically,the phenomenon of fractional revivals in such systems,which is a generic characteristic manifested by the wave-packet evolution in bounded Hamiltonian systems.Identifying the fractional revivals using specific probes is an important task in the theory of quantum measurement and sensing.We numerically simulate the temporal evolution of probability density and information entropy density,which manifest self-similarly recurring interference patterns,namely,quantum carpets.Our numerical results show that the quantum carpets not only serve as an effective probe for recognizing the fractional revivals of various order but they efficiently describe the effect of spatially-varying mass on the structure of fractional revivals,which is manifested as a symmetry breaking in their designs.展开更多
Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,t...Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics.Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains.We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG,leading to suppression and enhancement of frequency-comb emission.The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG.The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail.Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV–XUV regimes.展开更多
This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations.It is shown that the solutions of the Boussinesq equation...This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations.It is shown that the solutions of the Boussinesq equations converge to those of zero thermal diffusivity Boussinesq equations as the thermal diffusivity tends to zero,and the convergence rate is established.In addition,we prove that the boundary-layer thickness is of the valueδ(k)=k^(α)with anyα∈(0,1/4)for a small diffusivity coefficient k>0,and we also find a function to describe the properties of the boundary layer.展开更多
In this paper, a pest control model with state-dependent impulses is firstly established, which relies on releasing of natural enemies, together with spraying pesticides. By using the successor function of differentia...In this paper, a pest control model with state-dependent impulses is firstly established, which relies on releasing of natural enemies, together with spraying pesticides. By using the successor function of differential equation geometry rules, the existence of order one periodic solution is discussed. According to the Analogue of Poincare's Criterion, the orbitally asymptotic stability of the order one periodic solution is obtained. Furthermore, we investigated the global attractor of the system. From a biological point of view, our results indicate that: (1) the pest population can be controlled below some threshold; (2) compared to single measure, it is more efficient to take two measures for reducing the level of the pests.展开更多
To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated....To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.展开更多
This paper concerns an optimal dividend-penalty problem for the risk models with surplus-dependent premiums.The objective is to maximize the difference of the expected cumulative discounted dividend payments received ...This paper concerns an optimal dividend-penalty problem for the risk models with surplus-dependent premiums.The objective is to maximize the difference of the expected cumulative discounted dividend payments received until the moment of ruin and a discounted penalty payment taken at the moment of ruin.Since the value function may be not smooth enough to be the classical solution of the HJB equation,the viscosity solution is involved.The optimal value function can be characterized as the smallest viscosity supersolution of the HJB equation and the optimal dividend-penalty strategy has a band structure.Finally,some numerical examples with gamma distribution for the claims are analyzed.展开更多
In this work, we applied the invariant method to calculate the coherent state of the harmonic oscillator with position-dependent mass, which in modern physics has great application. We also obtain the calculation of H...In this work, we applied the invariant method to calculate the coherent state of the harmonic oscillator with position-dependent mass, which in modern physics has great application. We also obtain the calculation of Heisenberg’s uncertainty principle, and we will show that it is verified.展开更多
Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to a...Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to analyze such data with the additive hazards model, which specifies that the hazard function is the sum of an arbitrary baseline hazard function and a regression function of covariates. We develop estimating equation approaches to estimate the regression parameters. The resultant estimators are shown to be consistent and asymptotically normal. Some simulation studies and a real data example are used to evaluate the finite sample properties of the proposed estimators.展开更多
基金the National Natural Sciente Foundation of China (Grant Nos. 10771021, 10471012)Scientific Research Foundation for Returned Scholars, Ministry of Education of China (Grant No. [2005]564)
文摘We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金National Natural Science Foundation of China(Grant Nos.12101265,12026431,11701230,11731005)Qing Lan Project of Jiangsu Province+1 种基金the dual creative(innovative and entrepreneurial)talents project in Jiangsu Province(Grant No.JSSCBS20210973)China Postdoctoral Science Foundation(Grant No.2022M721392)。
文摘In this article,we consider the long-time behavior of extensible beams with nonlocal weak damping:ε(t)u_(tt)+Δ^(2)u-m(‖▽u‖^(2))Δu+‖u_(t)‖^(p_(u_(t)))+f(u)=h,whereε(t)is a decreasing function vanishing at infinity.Within the theory of process on time-dependent spaces,we investigate the existence of the time-dependent attractor by using the Condition(C_(t))method and more detailed estimates.The results obtained essentially improve and complete some previous works.
基金Supported by the Brain Pool Program of Korea Federation of Science and Technology Societies(072-1-3-0164)the Natural Science Foundation of Guangdong Province in China(06025059)
文摘This article investigates the property of linearly dependence of solutions f(z) and f(z + 2πi) for higher order linear differential equations with entire periodic coefficients.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274230,91950102,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China (Grant No.KYCX230443)。
文摘We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.
基金Financial support from Higher Education Commission(HEC)of Pakistan,under Grant No.20-14808/NRPU/R&D/HEC/20212021
文摘Position-dependent-mass systems are of great importance in many physical situations,such as the transport of charge carriers in semiconductors with non-uniform composition and in the theory of many-body interactions in condensed matter.Here we investigate,numerically and analytically,the phenomenon of fractional revivals in such systems,which is a generic characteristic manifested by the wave-packet evolution in bounded Hamiltonian systems.Identifying the fractional revivals using specific probes is an important task in the theory of quantum measurement and sensing.We numerically simulate the temporal evolution of probability density and information entropy density,which manifest self-similarly recurring interference patterns,namely,quantum carpets.Our numerical results show that the quantum carpets not only serve as an effective probe for recognizing the fractional revivals of various order but they efficiently describe the effect of spatially-varying mass on the structure of fractional revivals,which is manifested as a symmetry breaking in their designs.
基金the National Natural Science Foundation of China(Grant Nos.12074239 and 91850209)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2020A1515010927 and 2020ST084)+1 种基金the Fund from the Department of Education of Guangdong Province,China(Grant Nos.2019KTSCX038 and 2020KCXTD012)the Fund from Shantou University(Grant No.NTF18030).
文摘Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics.Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains.We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG,leading to suppression and enhancement of frequency-comb emission.The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG.The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail.Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV–XUV regimes.
基金the National Natural Science Foundation of China(12061037,11971209)the Natural Science Foundation of Jiangxi Province(20212BAB201016)National Natural Science Foundation of China(11861038)。
文摘This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations.It is shown that the solutions of the Boussinesq equations converge to those of zero thermal diffusivity Boussinesq equations as the thermal diffusivity tends to zero,and the convergence rate is established.In addition,we prove that the boundary-layer thickness is of the valueδ(k)=k^(α)with anyα∈(0,1/4)for a small diffusivity coefficient k>0,and we also find a function to describe the properties of the boundary layer.
基金Research is supported by the National Natural Science Foundation of China (11271260), Shanghai Leading Academic Discipline Project (No. XTKX2012), the Hujiang Foundation of China (B14005) and the Innovation Program of Shanghai Municipal Education Committee (13ZZ116).
文摘In this paper, a pest control model with state-dependent impulses is firstly established, which relies on releasing of natural enemies, together with spraying pesticides. By using the successor function of differential equation geometry rules, the existence of order one periodic solution is discussed. According to the Analogue of Poincare's Criterion, the orbitally asymptotic stability of the order one periodic solution is obtained. Furthermore, we investigated the global attractor of the system. From a biological point of view, our results indicate that: (1) the pest population can be controlled below some threshold; (2) compared to single measure, it is more efficient to take two measures for reducing the level of the pests.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.
基金supported by National Natural Science Foundation of China(11471218)Hebei Higher School Science and Technology Research Projects(ZD20131017)Joint Doctoral Training Foundation of HEBUT(2018GN0001)。
文摘This paper concerns an optimal dividend-penalty problem for the risk models with surplus-dependent premiums.The objective is to maximize the difference of the expected cumulative discounted dividend payments received until the moment of ruin and a discounted penalty payment taken at the moment of ruin.Since the value function may be not smooth enough to be the classical solution of the HJB equation,the viscosity solution is involved.The optimal value function can be characterized as the smallest viscosity supersolution of the HJB equation and the optimal dividend-penalty strategy has a band structure.Finally,some numerical examples with gamma distribution for the claims are analyzed.
文摘In this work, we applied the invariant method to calculate the coherent state of the harmonic oscillator with position-dependent mass, which in modern physics has great application. We also obtain the calculation of Heisenberg’s uncertainty principle, and we will show that it is verified.
基金Supported by the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities(16JJD910002)supported by the State Key Program of National Natural Science Foundation of China(71331006)+3 种基金the State Key Program in the Major Research Plan of National Natural Science Foundation of China(91546202)National Center for Mathematics and Interdisciplinary Sciences(NCMIS)Key Laboratory of RCSDS,AMSS,CAS(2008DP173182)Innovative Research Team of Shanghai University of Finance and Economics(IRTSHUFE13122402)
文摘Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to analyze such data with the additive hazards model, which specifies that the hazard function is the sum of an arbitrary baseline hazard function and a regression function of covariates. We develop estimating equation approaches to estimate the regression parameters. The resultant estimators are shown to be consistent and asymptotically normal. Some simulation studies and a real data example are used to evaluate the finite sample properties of the proposed estimators.