This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insert...This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation.展开更多
基金Project supported by the National Basic Research Program of China (Grant Nos.2006CB302803 and 2011CB301701)the National Natural Science Foundation of China (Grant No.60877036)+1 种基金State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No.2008SH02)the Knowledge Innovation Program of Institute of Semiconductors,Chinese Academy of Sciences (Grant No.ISCAS2008T10)
文摘This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation.