This paper is devoted to the problem of finding optimized parameter combinations of automotive damper modules. Different cost functions using the amplitude spectrum of the excitation and the frequency response functio...This paper is devoted to the problem of finding optimized parameter combinations of automotive damper modules. Different cost functions using the amplitude spectrum of the excitation and the frequency response function of the car model will be investigated and it is shown that for three different arbitrary road excitations there exists a parameter combination of top mount stiffness, piston rod mass and damping constant that provides an optimum for the dynamic wheel load fluctuation. The achieved advantage of the optimized damper module regarding the dynamic wheel load fluctuation compared to a simple damper in a two mass vibration system can reach up to 20 percent.展开更多
In this paper, an attempt is made to determine the electric potential that would be generated in the piezoelectric vibration absorber using finite element piezoelectric analysis to determine optimal locations for damp...In this paper, an attempt is made to determine the electric potential that would be generated in the piezoelectric vibration absorber using finite element piezoelectric analysis to determine optimal locations for damping of the first mode. Optimal placement of piezoelectric vibration absorber for passive vibration control application of a cantilever composite plate is investigated. Finite element piezoelectric modal analysis is performed. Models based on placing piezoelectric vibration absorbers at five different locations on the surface of the plate and incorporating piezoelectric properties are built. Modal analysis is used to find the electric potential developed in the piezoelectric vibration absorber. The location that yields the highest amount of electric potential would naturally be the best location for the vibration absorber. First bending mode of the cantilever composite plate is aimed for damping. Results of the analysis are verified with an experimental testing of the composite plate with piezoelectric vibration absorber firmly attached to the plate on the most effective location. A good agreement is found between the analytical and experimental results. Further, a resistive shunt circuit is designed for the passive damping of the first mode and attached to the vibration absorber in which the electric potential developed would be dissipated as heat to obtain passive vibration compensation. The experiment also demonstrates that a damping of 6 percent is obtained in the first mode of vibration and a great amount of damping is achieved in the second and third modes as well.展开更多
文摘This paper is devoted to the problem of finding optimized parameter combinations of automotive damper modules. Different cost functions using the amplitude spectrum of the excitation and the frequency response function of the car model will be investigated and it is shown that for three different arbitrary road excitations there exists a parameter combination of top mount stiffness, piston rod mass and damping constant that provides an optimum for the dynamic wheel load fluctuation. The achieved advantage of the optimized damper module regarding the dynamic wheel load fluctuation compared to a simple damper in a two mass vibration system can reach up to 20 percent.
文摘In this paper, an attempt is made to determine the electric potential that would be generated in the piezoelectric vibration absorber using finite element piezoelectric analysis to determine optimal locations for damping of the first mode. Optimal placement of piezoelectric vibration absorber for passive vibration control application of a cantilever composite plate is investigated. Finite element piezoelectric modal analysis is performed. Models based on placing piezoelectric vibration absorbers at five different locations on the surface of the plate and incorporating piezoelectric properties are built. Modal analysis is used to find the electric potential developed in the piezoelectric vibration absorber. The location that yields the highest amount of electric potential would naturally be the best location for the vibration absorber. First bending mode of the cantilever composite plate is aimed for damping. Results of the analysis are verified with an experimental testing of the composite plate with piezoelectric vibration absorber firmly attached to the plate on the most effective location. A good agreement is found between the analytical and experimental results. Further, a resistive shunt circuit is designed for the passive damping of the first mode and attached to the vibration absorber in which the electric potential developed would be dissipated as heat to obtain passive vibration compensation. The experiment also demonstrates that a damping of 6 percent is obtained in the first mode of vibration and a great amount of damping is achieved in the second and third modes as well.