An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) ...An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.展开更多
Aims Large hurricanes have profound impacts on temperate forests,but owing to their infrequent nature these effects have rarely been examined in detail.In 1996,Hurricane Fran significantly damaged many long-term tree ...Aims Large hurricanes have profound impacts on temperate forests,but owing to their infrequent nature these effects have rarely been examined in detail.In 1996,Hurricane Fran significantly damaged many long-term tree census plots in the Duke Forest on the North Carolina Piedmont,thereby providing an exceptional opportunity to examine pre-and post-hurricane forest compositional trajectories.Our goal was to examine immediate,short-term(0–4 years)and longer term(;5 year)hurricane-induced structural,spatial and compositional changes in the tree population(stem d.b.h>1 cm)in the context of our detailed,long-term knowledge of the dynamics of these forests.Methods We surveyed stem damage and tree mortality in 34 long-term permanent plots(ca.70-year record;404–1012 m^(2))and 7 large mapped tree stands(ca.20-year record;5250–65000 m^(2))representing both transition-phase,even-aged pine stands and uneven-aged upland hardwood forests.We employed three types of damage measures to quantify stand-level damage severity:percentage of stems damaged,percentage of basal area lost and a‘stand-level damage index’.Second-order spatial analysis(Ripley’s K-function)was used to investigate patterns in tree mortality.Important findings Our study found hurricane effects on the structural attributes of Piedmont forests to be variable and patchy.Changes in tree species composition,however,were modest.Uprooting was the major damage type for the overstory trees[diameter at breast height(d.b.h.)>10 cm]apparently due to the exposure of the crowns to high wind combined with heavy rainfall prior to and during the storm.Saplings,juvenile trees and small trees(1–10 cm d.b.h.)of the understory and midstory were mainly damaged by being pinned or bent by their damaged large neighbors.Hurricane-induced tree mortality varied weakly among species,was positively correlated with pre-hurricane tree size and remained up to 2-fold higher than pre-hurricane background mortality 5 years after the hurricane.Spatial point pattern analysis revealed a 展开更多
The damage degree of neurons in perilesion at different time points was observed in order to explore the optimal operation occasion. Piglet lobar hematomas were produced by pressure-controlled infusions of 2.5 mL auto...The damage degree of neurons in perilesion at different time points was observed in order to explore the optimal operation occasion. Piglet lobar hematomas were produced by pressure-controlled infusions of 2.5 mL autonomous blood into the right frontal hemispheric white matter over 15 min, and the metabolic changes were ambulatorily detected with MRS at 3rd, 12th, 24th and 48th h after hematoma induction. Brain tissues of perihematoma were also obtained at different time points. The transcription level of Bax gene was detected by in situ hybridization and apoptosis by TUNEL technique, and the pathologic change of neurons was observed under an electron microscope. The results showed that the number of Bax positive cells reached the peak at 24 h (79.00± 4.243/5 fields). There was no significant difference in A values between 3 h and 6 h, 12 h (P〉 0. 05), but there significant difference between 24 h and 3 h, 6 h, 12 h (P〈0. 05). The number of apoptotic cells reached the peak at 24 h (P〈0. 001), and there was no significant difference between 3 h and 6 h (P=0. 999). The area of the apoptotic cells showed no significant difference between 3 h and 6 h or among 3 h, 6 h and 6 h (P〉0.05). Lac peak mainly occurred at 24 h and 48 h, while on the healthy side, no Lac peak was detectable. The ratio of NAA/Cr presented a descent tendency, but there was no significant difference among the groups before 12 h (P〉0. 05), there was very significant difference between 3, 6 and 24, 48 h (P〈0. 01). Under electronic microscopy, the neuronal damage surrounding hematoma in 3 to 6 h was milder than in 24 h to 48 h. It was concluded that the secondary apoptosis, damage and metabolic disturbance of the neurons surround- ing hematoma was milder in 3-6 h in acute intracerebral hemorrhage, while obviously aggravated in 24-48 h. An effective intervention is needed to reduce secondary damage as soon as possible.展开更多
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ...The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.展开更多
基金Project(2007CB714202) supported by the National Key Basic Research Program of ChinaProject(SLDRCE10-B-07) supported by theMinistry of Science and Technology of China
文摘An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.
基金supported by W.C.Coker and A.H.Beers fellowships and a Dissertation Completion Fellowship from the University of North Carolina at Chapel Hill to W.X.and a grant from the National Science Foundation(DEB-97-07551)to R.K.P.and D.L.U.
文摘Aims Large hurricanes have profound impacts on temperate forests,but owing to their infrequent nature these effects have rarely been examined in detail.In 1996,Hurricane Fran significantly damaged many long-term tree census plots in the Duke Forest on the North Carolina Piedmont,thereby providing an exceptional opportunity to examine pre-and post-hurricane forest compositional trajectories.Our goal was to examine immediate,short-term(0–4 years)and longer term(;5 year)hurricane-induced structural,spatial and compositional changes in the tree population(stem d.b.h>1 cm)in the context of our detailed,long-term knowledge of the dynamics of these forests.Methods We surveyed stem damage and tree mortality in 34 long-term permanent plots(ca.70-year record;404–1012 m^(2))and 7 large mapped tree stands(ca.20-year record;5250–65000 m^(2))representing both transition-phase,even-aged pine stands and uneven-aged upland hardwood forests.We employed three types of damage measures to quantify stand-level damage severity:percentage of stems damaged,percentage of basal area lost and a‘stand-level damage index’.Second-order spatial analysis(Ripley’s K-function)was used to investigate patterns in tree mortality.Important findings Our study found hurricane effects on the structural attributes of Piedmont forests to be variable and patchy.Changes in tree species composition,however,were modest.Uprooting was the major damage type for the overstory trees[diameter at breast height(d.b.h.)>10 cm]apparently due to the exposure of the crowns to high wind combined with heavy rainfall prior to and during the storm.Saplings,juvenile trees and small trees(1–10 cm d.b.h.)of the understory and midstory were mainly damaged by being pinned or bent by their damaged large neighbors.Hurricane-induced tree mortality varied weakly among species,was positively correlated with pre-hurricane tree size and remained up to 2-fold higher than pre-hurricane background mortality 5 years after the hurricane.Spatial point pattern analysis revealed a
文摘The damage degree of neurons in perilesion at different time points was observed in order to explore the optimal operation occasion. Piglet lobar hematomas were produced by pressure-controlled infusions of 2.5 mL autonomous blood into the right frontal hemispheric white matter over 15 min, and the metabolic changes were ambulatorily detected with MRS at 3rd, 12th, 24th and 48th h after hematoma induction. Brain tissues of perihematoma were also obtained at different time points. The transcription level of Bax gene was detected by in situ hybridization and apoptosis by TUNEL technique, and the pathologic change of neurons was observed under an electron microscope. The results showed that the number of Bax positive cells reached the peak at 24 h (79.00± 4.243/5 fields). There was no significant difference in A values between 3 h and 6 h, 12 h (P〉 0. 05), but there significant difference between 24 h and 3 h, 6 h, 12 h (P〈0. 05). The number of apoptotic cells reached the peak at 24 h (P〈0. 001), and there was no significant difference between 3 h and 6 h (P=0. 999). The area of the apoptotic cells showed no significant difference between 3 h and 6 h or among 3 h, 6 h and 6 h (P〉0.05). Lac peak mainly occurred at 24 h and 48 h, while on the healthy side, no Lac peak was detectable. The ratio of NAA/Cr presented a descent tendency, but there was no significant difference among the groups before 12 h (P〉0. 05), there was very significant difference between 3, 6 and 24, 48 h (P〈0. 01). Under electronic microscopy, the neuronal damage surrounding hematoma in 3 to 6 h was milder than in 24 h to 48 h. It was concluded that the secondary apoptosis, damage and metabolic disturbance of the neurons surround- ing hematoma was milder in 3-6 h in acute intracerebral hemorrhage, while obviously aggravated in 24-48 h. An effective intervention is needed to reduce secondary damage as soon as possible.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732997)the National Natural Science Foundation of China(Grant Nos.51890912,52008268)Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University(Grant No.2023007)。
文摘The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.