To simulate the electro-hydrodynamics of wire-plate corona discharge at different voltages accurately,a simulation method,which relates the definite radius and initial velocity of a jet source to the amplitude of disc...To simulate the electro-hydrodynamics of wire-plate corona discharge at different voltages accurately,a simulation method,which relates the definite radius and initial velocity of a jet source to the amplitude of discharge voltage,is developed.Firstly,a model of the electro-hydrodynamics is established by the Matlab software using the governing equations discretized with the finite difference method.Secondly,the electric field strength and current density are simulated and the radius and initial velocity of a jet source at different voltages are determined.Finally,the discharge electro-hydrodynamics is simulated using the determined boundary conditions.Compared with using a conventional method,using the proposed method can obtain a wind velocity with smaller errors from the experimental and theoretical wind velocities: the errors between simulated wind velocity and its theoretical counter part at 45 kV and 50 kV decrease from 9% and 6.25% to 1.7% and 1.56%,respectively.Thus,the proposed method is feasible for the existing discharge models.展开更多
The negative DC corona discharge in air at atmospheric pressure was investigated in a needle-to-water system to obtain the pressure distribution of corona ionic wind.The deformation of water surface was measured and t...The negative DC corona discharge in air at atmospheric pressure was investigated in a needle-to-water system to obtain the pressure distribution of corona ionic wind.The deformation of water surface was measured and the distribution of wind pressure over the water surface was calculated.The effects of varying discharge parameters,such as applied voltage,gap spacing,tip radius of needle,and the shape of grounded electrode,on the wind pressure were studied.The measured wind pressure ranges from several Pa to several tens of Pa and up to 33 Pa over a small area;the pressure is comparatively large in the center and decreases quickly outwards.In the experiment system,a higher voltage on a 3 mm gap resulted in a stronger pressure of the ionic wind;around the onset voltage,using a needle with tip radius of 50μm obtained a larger wind pressure than using a needle with 100μm tip radius,but the latter one can produce larger pressure at higher voltages.Plus,the shape of the grounded electrode only influences the wind pressure a little.展开更多
Circle points discharge tube current controller is a new type device to limit the output of high voltage discharge current. Circle points uniform corona discharge to form air ionization current in the discharge tube. ...Circle points discharge tube current controller is a new type device to limit the output of high voltage discharge current. Circle points uniform corona discharge to form air ionization current in the discharge tube. On the outside, even if the discharge electrode is spark discharging or the two discharge electrodes are short circuited, the air ionization current in the tube remains within a stable range, and there is no spark discharge. In this case, when the discharge current only increases slightly, the requirement to limited current is obtained. By installing the controller at a discharge pole with a small power but high voltage supply, we can realize the shift between the continuous spark line discharge and corona discharge. This provides a new simple device for spark discharge research and is a supplement to the Townsend discharge experiment.展开更多
基金Project supported by National Natural Science Foundation of China (10875036), Hebei Provincial Natural Science Foundation of China (A2010000182), Hebei Provincial Science and Technology Supporting Program of China (09276712D).
文摘To simulate the electro-hydrodynamics of wire-plate corona discharge at different voltages accurately,a simulation method,which relates the definite radius and initial velocity of a jet source to the amplitude of discharge voltage,is developed.Firstly,a model of the electro-hydrodynamics is established by the Matlab software using the governing equations discretized with the finite difference method.Secondly,the electric field strength and current density are simulated and the radius and initial velocity of a jet source at different voltages are determined.Finally,the discharge electro-hydrodynamics is simulated using the determined boundary conditions.Compared with using a conventional method,using the proposed method can obtain a wind velocity with smaller errors from the experimental and theoretical wind velocities: the errors between simulated wind velocity and its theoretical counter part at 45 kV and 50 kV decrease from 9% and 6.25% to 1.7% and 1.56%,respectively.Thus,the proposed method is feasible for the existing discharge models.
基金Project supported by National Key Laboratory of Science and Technology on Electro-mechanical Dynamic Control of China(2011C3606)
文摘The negative DC corona discharge in air at atmospheric pressure was investigated in a needle-to-water system to obtain the pressure distribution of corona ionic wind.The deformation of water surface was measured and the distribution of wind pressure over the water surface was calculated.The effects of varying discharge parameters,such as applied voltage,gap spacing,tip radius of needle,and the shape of grounded electrode,on the wind pressure were studied.The measured wind pressure ranges from several Pa to several tens of Pa and up to 33 Pa over a small area;the pressure is comparatively large in the center and decreases quickly outwards.In the experiment system,a higher voltage on a 3 mm gap resulted in a stronger pressure of the ionic wind;around the onset voltage,using a needle with tip radius of 50μm obtained a larger wind pressure than using a needle with 100μm tip radius,but the latter one can produce larger pressure at higher voltages.Plus,the shape of the grounded electrode only influences the wind pressure a little.
文摘Circle points discharge tube current controller is a new type device to limit the output of high voltage discharge current. Circle points uniform corona discharge to form air ionization current in the discharge tube. On the outside, even if the discharge electrode is spark discharging or the two discharge electrodes are short circuited, the air ionization current in the tube remains within a stable range, and there is no spark discharge. In this case, when the discharge current only increases slightly, the requirement to limited current is obtained. By installing the controller at a discharge pole with a small power but high voltage supply, we can realize the shift between the continuous spark line discharge and corona discharge. This provides a new simple device for spark discharge research and is a supplement to the Townsend discharge experiment.