In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
High-molecular-weight glutenin subunits(HMW-GSs) play a critical role in determining the viscoelastic properties of wheat dough. The HMW-GSs are encoded by Glu-A1, Glu-B1, and Glu-D1 loci on the long arms of chromos...High-molecular-weight glutenin subunits(HMW-GSs) play a critical role in determining the viscoelastic properties of wheat dough. The HMW-GSs are encoded by Glu-A1, Glu-B1, and Glu-D1 loci on the long arms of chromosomes 1A, 1B, and 1D, respectively. In the present study, four near-isogenic lines with different HMW-GS deletions and compositions at the Glu-A1 and Glu-D1 loci in Yangmai 18 background were used for quality analysis. Deletion in Glu-D1 showed much weaker gluten quality and dough strength than null Glu-A1 genotype and wild genotype(WT), based on the measurements of sodium dodecyl sulfate(SDS)-sedimentation, lactic acid solvent retention capacity(SRC), gluten index, development time, stability time, and alveograph P and L values. The deletion of Glu-D1 did not significantly affect grain hardness, grain protein content, water SRC, sodium carbonate SRC, and sucrose SRC. Double null genotype in Glu-A1 and Glu-D1 and single null genotype in Glu-D1 showed significantly higher cookie diameter, crispness, and lower cookie height compared with single null genotype in Glu-A1 and WT. These indicate that the null Glu-D1 genotype is useful for improvement of biscuit quality, and use of this germplasm would be a viable strategy to develop new wheat varieties for biscuit processing.展开更多
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
基金supported by the Independent Innovation Funding for Agricultural Science and Technology of Jiangsu Province, China (CX(13)5070)the Natural Science Foundation of Jiangsu Province, China (BK20160448)the earmarked fund for China Agriculture Research System (CARS-03)
文摘High-molecular-weight glutenin subunits(HMW-GSs) play a critical role in determining the viscoelastic properties of wheat dough. The HMW-GSs are encoded by Glu-A1, Glu-B1, and Glu-D1 loci on the long arms of chromosomes 1A, 1B, and 1D, respectively. In the present study, four near-isogenic lines with different HMW-GS deletions and compositions at the Glu-A1 and Glu-D1 loci in Yangmai 18 background were used for quality analysis. Deletion in Glu-D1 showed much weaker gluten quality and dough strength than null Glu-A1 genotype and wild genotype(WT), based on the measurements of sodium dodecyl sulfate(SDS)-sedimentation, lactic acid solvent retention capacity(SRC), gluten index, development time, stability time, and alveograph P and L values. The deletion of Glu-D1 did not significantly affect grain hardness, grain protein content, water SRC, sodium carbonate SRC, and sucrose SRC. Double null genotype in Glu-A1 and Glu-D1 and single null genotype in Glu-D1 showed significantly higher cookie diameter, crispness, and lower cookie height compared with single null genotype in Glu-A1 and WT. These indicate that the null Glu-D1 genotype is useful for improvement of biscuit quality, and use of this germplasm would be a viable strategy to develop new wheat varieties for biscuit processing.