In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selec...In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selecting an optimal strategy with a view to minimizing the risk described by a convex risk measure of its terminal wealth. We solve the problem in two steps. First, we employ the filtering theory to turn the optimization problem with partial observations into one with complete observations. Second, by using BSDEs with jumps, we solve the problem with complete observations.展开更多
In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). ...In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.展开更多
基金Supported by the National Natural Science Foundation of China(No.11371284)the Fundamental Research Funds for the Central Universities(WUT:2015IVA066)
文摘In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selecting an optimal strategy with a view to minimizing the risk described by a convex risk measure of its terminal wealth. We solve the problem in two steps. First, we employ the filtering theory to turn the optimization problem with partial observations into one with complete observations. Second, by using BSDEs with jumps, we solve the problem with complete observations.
基金Supported by the National Natural Science Foundation of China(11371284)the Natural Science Foundation of Henan Province(14B110037)
文摘In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.