期刊文献+

Risk-based Optimal Investment and Proportional Reinsurance of an Insurer with Hidden Regime Switching

Risk-based Optimal Investment and Proportional Reinsurance of an Insurer with Hidden Regime Switching
原文传递
导出
摘要 In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selecting an optimal strategy with a view to minimizing the risk described by a convex risk measure of its terminal wealth. We solve the problem in two steps. First, we employ the filtering theory to turn the optimization problem with partial observations into one with complete observations. Second, by using BSDEs with jumps, we solve the problem with complete observations. In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selecting an optimal strategy with a view to minimizing the risk described by a convex risk measure of its terminal wealth. We solve the problem in two steps. First, we employ the filtering theory to turn the optimization problem with partial observations into one with complete observations. Second, by using BSDEs with jumps, we solve the problem with complete observations.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第3期755-770,共16页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.11371284) the Fundamental Research Funds for the Central Universities(WUT:2015IVA066)
关键词 INVESTMENT REINSURANCE hidden Markov chain convex risk measure backward stochastic differential equation investment reinsurance hidden Markov chain convex risk measure backward stochastic differential equation
  • 相关文献

参考文献1

二级参考文献20

  • 1Rabehasaina, L., Sericola, B.: A second-order Markov-modulated fluid queue with linear service rate. J. Appl. Probab., 41, 758-777 (2004). 被引量:1
  • 2Lu, Y., Li, S.: On the probability of ruin in a Markov-modulated risk model. Insurance Math. Econom., 37(3), 522-532 (2005). 被引量:1
  • 3Karatzas, I., Shreve, S. E.: Methods of Mathematical Finance, Springer-Verlag, New York, 2001. 被引量:1
  • 4Elliott, R. J., Aggoun, L., Moore, J.: Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994. 被引量:1
  • 5Browne, S.: Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res., 20(4), 937-958 (1995). 被引量:1
  • 6Schmidli, H.: Optimal proportional reinsurance policies in a dynamic setting. Scand. Actuar. J., 2001(1), 55-68 (2001). 被引量:1
  • 7Promislow, S. D., Young, V. R.: Minimizing the probability of ruin when claims follow Brownian motion with drift, g. Am. Actuar. J., 9(3), 109-128 (2005). 被引量:1
  • 8Zhang, X., Zhou, M., Guo, J.: Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting. Appl. Stoch. Models Bus. Ind., 23(1), 63-71 (2002). 被引量:1
  • 9Gerber, H. U., Shiu, E. S. W.: Optimal dividends: analysis with Brownian motion. N. Am, Actuar. J,, 8(1), 1-20 (2OO4). 被引量:1
  • 10Asmussen, S.: Risk theory in a Markovian environment. Scand. Ac$uar. J., 1989, 69-100 (1989). 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部