As a Lagrangian meshless method, the material point method (MPM) is suitable for dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that of the finite element method (FEM...As a Lagrangian meshless method, the material point method (MPM) is suitable for dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that of the finite element method (FEM) for small deformation problems. Therefore, an algorithm for the coupling of FEM and MPM is proposed to take advantages of both methods. Furthermore, a conversion scheme of elements to particles is developed. Hence, the material domain is firstly discretized by finite elements, and then the distorted elements are automatically converted into MPM particles to avoid element entanglement. The interaction between finite elements and MPM particles is implemented based on the background grid in MPM framework. Numerical results are in good agreement with that of both FEM and MPM展开更多
基金supported by the National Basic Research Program of China (2010CB832701)
文摘As a Lagrangian meshless method, the material point method (MPM) is suitable for dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that of the finite element method (FEM) for small deformation problems. Therefore, an algorithm for the coupling of FEM and MPM is proposed to take advantages of both methods. Furthermore, a conversion scheme of elements to particles is developed. Hence, the material domain is firstly discretized by finite elements, and then the distorted elements are automatically converted into MPM particles to avoid element entanglement. The interaction between finite elements and MPM particles is implemented based on the background grid in MPM framework. Numerical results are in good agreement with that of both FEM and MPM