A fast method based on the phase trajectory to compute DSR is developed. Firstly, the phase trajectory sensitivity has more linear effect than power angle sensitivity. According to the phase trajectory boundary functi...A fast method based on the phase trajectory to compute DSR is developed. Firstly, the phase trajectory sensitivity has more linear effect than power angle sensitivity. According to the phase trajectory boundary function, controlling unstable equilibrium generators could be identified. The PDSR is finally obtained by the sensitivity analysis between the phase and generators’ active power. Test results on the New England 10-genrator 39-bus system are presented and prove the effectiveness of this approach.展开更多
A model of double-harmonious circuit for non-feedback control of chaos is introduced. A controlling signal is added to the coefficient for two-order term of the nonlinear differential equation The effect of controllin...A model of double-harmonious circuit for non-feedback control of chaos is introduced. A controlling signal is added to the coefficient for two-order term of the nonlinear differential equation The effect of controlling signal on controlling chaos is studied. By changing the controlling frequency fk and controlling strength Ik, chaos to period-doubling, period-adding and quasi-period state can be controlled. The effect of phase on controlling chaos is also discussed. A breathing phenomenon is observed and its mechanism is explained.展开更多
文摘A fast method based on the phase trajectory to compute DSR is developed. Firstly, the phase trajectory sensitivity has more linear effect than power angle sensitivity. According to the phase trajectory boundary function, controlling unstable equilibrium generators could be identified. The PDSR is finally obtained by the sensitivity analysis between the phase and generators’ active power. Test results on the New England 10-genrator 39-bus system are presented and prove the effectiveness of this approach.
基金the National Natural Science Foundation of China
文摘A model of double-harmonious circuit for non-feedback control of chaos is introduced. A controlling signal is added to the coefficient for two-order term of the nonlinear differential equation The effect of controlling signal on controlling chaos is studied. By changing the controlling frequency fk and controlling strength Ik, chaos to period-doubling, period-adding and quasi-period state can be controlled. The effect of phase on controlling chaos is also discussed. A breathing phenomenon is observed and its mechanism is explained.