This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t&l...This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t<0), u (j) (0)=u(1)=0,(1≤j≤n-2).Effort is devoted to give some sufficient conditions for which the equation has at least two positive solutions.An example to illustrate the application of this theorem is given. [FQ(6*2。39,X-W]展开更多
In this article, the author characterizes orthogonal polynomials on an arbitrary smooth Jordan curve by a semi-conjugate matrix boundary value problem, which is different from the Riemann-Hilbert problems that appear ...In this article, the author characterizes orthogonal polynomials on an arbitrary smooth Jordan curve by a semi-conjugate matrix boundary value problem, which is different from the Riemann-Hilbert problems that appear in the theory of Riemann -Hilbert approach to asymptotic analysis for orthogonal polynomials on a real interval introduced by Fokas, Its, and Kitaev and on the unit circle introduced by Baik, Deift, and Johansson. The author hopes that their characterization may be applied to asymptotic analysis for general orthogonal polynomials by combining with a new extension of steepest descent method which we are looking for.展开更多
基金Supported by the NSF of Guangdong Province!( 980 0 1 8) Higher Education Bureau!( 1 99873)
文摘This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t<0), u (j) (0)=u(1)=0,(1≤j≤n-2).Effort is devoted to give some sufficient conditions for which the equation has at least two positive solutions.An example to illustrate the application of this theorem is given. [FQ(6*2。39,X-W]
基金RFDP of Higher Education(20060486001)NNSF of China(10471107)
文摘In this article, the author characterizes orthogonal polynomials on an arbitrary smooth Jordan curve by a semi-conjugate matrix boundary value problem, which is different from the Riemann-Hilbert problems that appear in the theory of Riemann -Hilbert approach to asymptotic analysis for orthogonal polynomials on a real interval introduced by Fokas, Its, and Kitaev and on the unit circle introduced by Baik, Deift, and Johansson. The author hopes that their characterization may be applied to asymptotic analysis for general orthogonal polynomials by combining with a new extension of steepest descent method which we are looking for.