期刊文献+

高阶非线性奇异共轭边值问题的正解

Positive Solutions to Higher Order Singular Nolinear Conjugate Boundary Value Problems
原文传递
导出
摘要 研究了一类带有参数的高阶奇异微分方程共轭边值问题,使用G uo-K rasnoselsk ii不动点定理得到了使得该问题正解存在与不存在的参数区间. In the present boundary value problems, nonexistence of positive Krasnoselskii Fixed point article, we investigate a class of higher order singular conjugate and some parametric intervals which ensures the existence or solutions to the problems are obtained by utilizing the Guo- Theorem.
机构地区 郑州大学数学系
出处 《数学的实践与认识》 CSCD 北大核心 2008年第18期217-222,共6页 Mathematics in Practice and Theory
基金 国家留学基金委员会河南地方项目(留金出[2006]3065)
关键词 高阶微分方程 共轭边值问题 奇异 正解 Higher-order differential equation conjugate boundary value problem singular positive solution
  • 相关文献

参考文献10

  • 1Henderson J, Yin W. Singular (k,n-k) boundary value problems between conjugate and right focal[J]. J Computa Appl Math, 1998,88 : 57-69. 被引量:1
  • 2Deimling K. Nonlinear Functional Analysis[M]. New York/Berlin: Springer-Verlag,1985. 被引量:1
  • 3Eloe P W. Positive solutions for higher order ordinary differential equations [J]. Electron J Diff Equa,1995,3:8- 20. 被引量:1
  • 4Eloe P W, Henderson J. Positive solutions for (n- 1,1) conjugate boundary value problems[J]. Nonl Anal, 1997, 28(10) : 1669-1680. 被引量:1
  • 5Ma R. Positive solutions for semipositone (k,n-k) conjugate boundary value problems[J]. J Math Anal Appl, 2000,252:220-229. 被引量:1
  • 6Kong L, Wang J. The Green's function for (k,n-k) conjugate boundary value problems and its applications[J]. J Math Anal Appl,2001,255:404-422. 被引量:1
  • 7郭大钧著..非线性泛函分析[M].济南:山东科学技术出版社,1985:536.
  • 8Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones[M]. New York: Academic Press Inc,1988. 被引量:1
  • 9Erbe L H, Mathsen R M. Positive solutions for singular nonlinear boundary value probtems[J]. Nonl Anal,2001, 46:979-986. 被引量:1
  • 10Wong F H. An application of Schauder fixed point theorem with respect to higher order BVPs[J]. Proc Amer Math Soc, 1998,126: 2389-2397. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部