The long term evolution advanced (LTE-advanced) standards target at high system performance comparable or superior to the requirements of the International mobile telecommunications advanced (IMT-advanced). In ord...The long term evolution advanced (LTE-advanced) standards target at high system performance comparable or superior to the requirements of the International mobile telecommunications advanced (IMT-advanced). In order to support backward compatibility with LTE, most of the key technologies have been retained in LTE-advanced, one of which is the discontinuous reception mechanism (DRX). LTE-advanced adopts carrier aggregation technology to extend the system bandwidth, which requires the LTE DRX applied in single-transceiver scenario to be adapted to multi-transceiver scenario with multiple component carriers. Apparently, carrier aggregation will influence the performance of DRX severely, so it's worth studying the impact brought by the coexistence ofLTE DRX and carrier aggregation on the system performance, e.g., the system delay. In this paper, first an overview of DRX in carrier aggregation scenario is given. Then it is modeled as a Markov process based on the queuing theory. Simulation results show that the independent component carrier configuration with a uniform Inactivity Timer achieves a superior service delay performance compared with other reference schemes.展开更多
Effects of a benzotriazole(BTA)-based small molecule,BTA2,as the third component on the charge carrier generation and recombination behavior of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-di...Effects of a benzotriazole(BTA)-based small molecule,BTA2,as the third component on the charge carrier generation and recombination behavior of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7):[6,6]-phenyl-C71-butyric acid methyl ester(PC71BM)organic solar cells(OSCs)were investigated by optical simulation of a transfer matrix model(TMM),photo-induced charge extraction by linearly increasing voltage(photo-CELIV)technique,atomic force microscope(AFM),and the Onsager–Braun model analysis.BTA2 is an A_(2)-A_(1)-D-A_(1)-A_(2)-type non-fullerene small molecule with thiazolidine-2,4-dione,BTA,and indacenodithiophene as the terminal acceptor(A_(2)),bridge acceptor(A_(1)),and central donor(D),respectively.The short-circuit current density of the OSCs with BTA2 can be enhanced significantly owing to a complementary absorption spectrum.The optical simulation of TMM shows that the ternary OSCs exhibit higher internal absorption than the traditional binary OSCs without BTA2,resulting in more photogenerated excitons in the ternary OSCs.The photo-CELIV investigation indicates that the ternary OSCs suffer higher charge trap-limited bimolecular recombination than the binary OSCs.AFM images show that BTA2 aggravates the phase separation between the donor and the acceptor,which is disadvantageous to charge carrier transport.The Onsager-Braun model analysis confirms that despite the charge collection efficiency of the ternary OSCs being lower than that of the binary OSCs,the optimized photon absorption and exciton generation processes of the ternary OSCs achieve an increase in photogenerated current and thus improve power conversion efficiency.展开更多
针对先进的长期演进(long term evolution advanced,LTE-A)系统中跨载波聚合技术下的频谱效率问题,考虑到载波衰减特性不同,研究发现,过多的控制开销限制了低频分量载波良好的数据承载能力,为此,提出基于信干噪比(signal to interferenc...针对先进的长期演进(long term evolution advanced,LTE-A)系统中跨载波聚合技术下的频谱效率问题,考虑到载波衰减特性不同,研究发现,过多的控制开销限制了低频分量载波良好的数据承载能力,为此,提出基于信干噪比(signal to interference plus noise ratio,SINR)的分量载波分配方案。该方案根据控制信息能否被正确解调将用户进行分组,然后针对不同分组的用户分配不同的主分量载波,从而减少低频分量载波承载的控制信息开销,提高频谱效率。仿真结果表明,改进的分配方案有效地提高了小区总吞吐量。展开更多
The energy efficiency and packet delay tradeoffs in long term evolution-advanced(LTE-A) systems are investigated.Analytical expressions are derived to explain the relation of energy efficiency to mean packet delay,arr...The energy efficiency and packet delay tradeoffs in long term evolution-advanced(LTE-A) systems are investigated.Analytical expressions are derived to explain the relation of energy efficiency to mean packet delay,arrival rate and component carrier(CC) configurations,from the theoretical respective which reveals that the energy efficiency of multiple CC systems is closely related to the frequency of CCs and the number of active CCs.Based on the theoretical analysis,a CC adjusting scheme for LTE-A systems is proposed to maximize energy efficiency subject to delay constraint by dynamically altering the on/off state of CCs according to traffic variations.Numerical and simulation results show that for CCs in different frequency bands with equal transmit power,the proposed scheme could significantly improve the energy efficiency of users in all aggregation levels within the constraint of mean packet delay.展开更多
基金supported by Major national S&T project(2009ZX03003-003-01)the National Natural Science Foundation of China (60971125, 60832009)
文摘The long term evolution advanced (LTE-advanced) standards target at high system performance comparable or superior to the requirements of the International mobile telecommunications advanced (IMT-advanced). In order to support backward compatibility with LTE, most of the key technologies have been retained in LTE-advanced, one of which is the discontinuous reception mechanism (DRX). LTE-advanced adopts carrier aggregation technology to extend the system bandwidth, which requires the LTE DRX applied in single-transceiver scenario to be adapted to multi-transceiver scenario with multiple component carriers. Apparently, carrier aggregation will influence the performance of DRX severely, so it's worth studying the impact brought by the coexistence ofLTE DRX and carrier aggregation on the system performance, e.g., the system delay. In this paper, first an overview of DRX in carrier aggregation scenario is given. Then it is modeled as a Markov process based on the queuing theory. Simulation results show that the independent component carrier configuration with a uniform Inactivity Timer achieves a superior service delay performance compared with other reference schemes.
基金This work was supported by the National Natural Science Foundation of China(Grant No.21811540393)Program for Changbaishan Scholars of Jilin Provincethe“Talents Cultivation Program”of Jilin University.
文摘Effects of a benzotriazole(BTA)-based small molecule,BTA2,as the third component on the charge carrier generation and recombination behavior of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7):[6,6]-phenyl-C71-butyric acid methyl ester(PC71BM)organic solar cells(OSCs)were investigated by optical simulation of a transfer matrix model(TMM),photo-induced charge extraction by linearly increasing voltage(photo-CELIV)technique,atomic force microscope(AFM),and the Onsager–Braun model analysis.BTA2 is an A_(2)-A_(1)-D-A_(1)-A_(2)-type non-fullerene small molecule with thiazolidine-2,4-dione,BTA,and indacenodithiophene as the terminal acceptor(A_(2)),bridge acceptor(A_(1)),and central donor(D),respectively.The short-circuit current density of the OSCs with BTA2 can be enhanced significantly owing to a complementary absorption spectrum.The optical simulation of TMM shows that the ternary OSCs exhibit higher internal absorption than the traditional binary OSCs without BTA2,resulting in more photogenerated excitons in the ternary OSCs.The photo-CELIV investigation indicates that the ternary OSCs suffer higher charge trap-limited bimolecular recombination than the binary OSCs.AFM images show that BTA2 aggravates the phase separation between the donor and the acceptor,which is disadvantageous to charge carrier transport.The Onsager-Braun model analysis confirms that despite the charge collection efficiency of the ternary OSCs being lower than that of the binary OSCs,the optimized photon absorption and exciton generation processes of the ternary OSCs achieve an increase in photogenerated current and thus improve power conversion efficiency.
文摘针对先进的长期演进(long term evolution advanced,LTE-A)系统中跨载波聚合技术下的频谱效率问题,考虑到载波衰减特性不同,研究发现,过多的控制开销限制了低频分量载波良好的数据承载能力,为此,提出基于信干噪比(signal to interference plus noise ratio,SINR)的分量载波分配方案。该方案根据控制信息能否被正确解调将用户进行分组,然后针对不同分组的用户分配不同的主分量载波,从而减少低频分量载波承载的控制信息开销,提高频谱效率。仿真结果表明,改进的分配方案有效地提高了小区总吞吐量。
基金Supported by the National High Technology Research and Development Program of China(No.2011AA01A109)the National Natural Science Foundation of China(No.61002017,61072076.)the Department of Science and Technology Commission of Shanghai Base Project(No.11DZ2290100)
文摘The energy efficiency and packet delay tradeoffs in long term evolution-advanced(LTE-A) systems are investigated.Analytical expressions are derived to explain the relation of energy efficiency to mean packet delay,arrival rate and component carrier(CC) configurations,from the theoretical respective which reveals that the energy efficiency of multiple CC systems is closely related to the frequency of CCs and the number of active CCs.Based on the theoretical analysis,a CC adjusting scheme for LTE-A systems is proposed to maximize energy efficiency subject to delay constraint by dynamically altering the on/off state of CCs according to traffic variations.Numerical and simulation results show that for CCs in different frequency bands with equal transmit power,the proposed scheme could significantly improve the energy efficiency of users in all aggregation levels within the constraint of mean packet delay.