We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective,and also the properties for cluster-tilting objects in d-cluster categories.We get the ...We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective,and also the properties for cluster-tilting objects in d-cluster categories.We get the following results:(1)When d>1,any almost complete cluster-tilting object in d-cluster category has only one complement.(2)Cluster-tilting objects in d-cluster categories are induced by tilting modules over some hereditary algebras.We also give a condition for a tilting module to induce a cluster-tilting object in a d-cluster category.(3)A 3-cluster category of finite type admits a cluster-tilting object if and only if its type is A1,A3,D2n-1(n>2).(4)The(2m+1)-cluster category of type D2n-1 admits a cluster-tilting object such that its endomorphism algebra is self-injective,and its stable category is equivalent to the(4m+2)-cluster category of type A4mn-4m+2n-1.展开更多
The researches of limits in categories are an important and essential problem in category theory. If the limit and colimit structures in a concrete category having limit and colimit are constructed, then a lot of prop...The researches of limits in categories are an important and essential problem in category theory. If the limit and colimit structures in a concrete category having limit and colimit are constructed, then a lot of properties in the category will become展开更多
Let(C,E,s)be an extriangulated category with a proper classξof E-triangles.We study complete cohomology of objects in(C,E,s)by applyingξ-projective resolutions andξ-injective coresolutions constructed in(C,E,s).Van...Let(C,E,s)be an extriangulated category with a proper classξof E-triangles.We study complete cohomology of objects in(C,E,s)by applyingξ-projective resolutions andξ-injective coresolutions constructed in(C,E,s).Vanishing of complete cohomology detects objects with finiteξ-projective dimension and finiteξ-injective dimension.As a consequence,we obtain some criteria for the validity of the Wakamatsu tilting conjecture and give a necessary and sufficient condition for a virtually Gorenstein algebra to be Gorenstein.Moreover,we give a general technique for computing complete cohomology of objects with finiteξ-Gprojective dimension.As an application,the relations betweenξ-projective dimension andξ-Gprojective dimension for objects in(C,E,s)are given.展开更多
The free object generated by a set in the category of complete L-fuzzy posets is discussed in this paper. The construction of a free complete L-fuzzy poset generated by a set is obtained, which is a generalization of ...The free object generated by a set in the category of complete L-fuzzy posets is discussed in this paper. The construction of a free complete L-fuzzy poset generated by a set is obtained, which is a generalization of the free complete lattice generated by a set.展开更多
文摘We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective,and also the properties for cluster-tilting objects in d-cluster categories.We get the following results:(1)When d>1,any almost complete cluster-tilting object in d-cluster category has only one complement.(2)Cluster-tilting objects in d-cluster categories are induced by tilting modules over some hereditary algebras.We also give a condition for a tilting module to induce a cluster-tilting object in a d-cluster category.(3)A 3-cluster category of finite type admits a cluster-tilting object if and only if its type is A1,A3,D2n-1(n>2).(4)The(2m+1)-cluster category of type D2n-1 admits a cluster-tilting object such that its endomorphism algebra is self-injective,and its stable category is equivalent to the(4m+2)-cluster category of type A4mn-4m+2n-1.
文摘The researches of limits in categories are an important and essential problem in category theory. If the limit and colimit structures in a concrete category having limit and colimit are constructed, then a lot of properties in the category will become
基金supported by the NSF of China(11671069,11771212)Qing Lan Project of Jiangsu Province and Natural Science Foundation of Jiangsu Province(BK20211358)+4 种基金supported by the NSF of China(11971225,11901341)Shandong Provincial Natural Science Foundation(ZR2019QA015)supported by the National Natural Science Foundation of China(11901190,11671221)the Hunan Provincial Natural Science Foundation of China(2018JJ3205)the Scientific Research Fund of Hunan Provincial Education Department(19B239).
文摘Let(C,E,s)be an extriangulated category with a proper classξof E-triangles.We study complete cohomology of objects in(C,E,s)by applyingξ-projective resolutions andξ-injective coresolutions constructed in(C,E,s).Vanishing of complete cohomology detects objects with finiteξ-projective dimension and finiteξ-injective dimension.As a consequence,we obtain some criteria for the validity of the Wakamatsu tilting conjecture and give a necessary and sufficient condition for a virtually Gorenstein algebra to be Gorenstein.Moreover,we give a general technique for computing complete cohomology of objects with finiteξ-Gprojective dimension.As an application,the relations betweenξ-projective dimension andξ-Gprojective dimension for objects in(C,E,s)are given.
文摘The free object generated by a set in the category of complete L-fuzzy posets is discussed in this paper. The construction of a free complete L-fuzzy poset generated by a set is obtained, which is a generalization of the free complete lattice generated by a set.