In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are est...In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.展开更多
In this paper,we study reduced rings in which every element is a sum of three tripotents that commute,and determine the integral domains over which every n£n matrix is a sum of three tripotents.It is proved that ...In this paper,we study reduced rings in which every element is a sum of three tripotents that commute,and determine the integral domains over which every n£n matrix is a sum of three tripotents.It is proved that for an integral domain R,every matrix in M_(n)(R)is a sum of three tripotents if and only if R■Zp with p=2,3,5 or 7.展开更多
A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provi...A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provide great convenience to the computation and analysis of the solutions to this class of equations, and can perform important functions in many analysis and design problems in descriptor system theory. The results proposed here are parallel to and more general than our early work about the linear matrix equation AX-XF = BY .展开更多
基金This work was supported by the Chinese Outstanding Youth Foundation(No.69925308)Program for Changjiang Scholars and Innovative ResearchTeam in University.
文摘In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.
基金Supported by Key Laboratory of Financial Mathematics of Fujian Province University(Putian University)(JR202203)the NSF of Anhui Province(2008085MA06).
文摘In this paper,we study reduced rings in which every element is a sum of three tripotents that commute,and determine the integral domains over which every n£n matrix is a sum of three tripotents.It is proved that for an integral domain R,every matrix in M_(n)(R)is a sum of three tripotents if and only if R■Zp with p=2,3,5 or 7.
基金supported by the Major Program of National Nat-ural Science Foundation of China (No. 60710002) Program for Changjiang Scholars and Innovative Research Team in University
文摘A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provide great convenience to the computation and analysis of the solutions to this class of equations, and can perform important functions in many analysis and design problems in descriptor system theory. The results proposed here are parallel to and more general than our early work about the linear matrix equation AX-XF = BY .