A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-un...A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional explicit-implicit The treatment of equations. The third-order mixed scheme is employed the three-dimensional for time integration. non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.展开更多
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen...A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.展开更多
A theoretical model for identica l coherent structures in the wall region of a turbulent boundary layer was propo sed, using the idea of general resonant triad of the hydrodynamic stability. The evolution of the stru...A theoretical model for identica l coherent structures in the wall region of a turbulent boundary layer was propo sed, using the idea of general resonant triad of the hydrodynamic stability. The evolution of the structures in the wall region of a turbulent boundary layer wa s studied by combining the compact finite differences of high numerical accuracy and the Fourier spectral hybrid method for solving the three dimensional Navier -Stokes equations. In this method, the third order mixed explicit-implicit sch eme was applied for the time integration. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, an d the sixth-order center compact schemes for the derivatives in spectral space were introduced, respectively. The fourth-order compact schemes satisfied by th e velocities and pressure in spectral space was derived. As an application, the method was implemented to the wall region of a turbulent boundary to study the e volution of identical coherent structures. It is found that the numerical result s are satisfactory.展开更多
Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundar...Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundary value problems. Finite difference method is widely applied to solving these problems due to its ease of use. However, when the wave number is large, the pollution effects are still a major difficulty in obtaining accurate numerical solutions. We develop a fast algorithm for solving three-dimensional Helmholtz boundary problems with large wave numbers. The boundary of computational domain is discrete based on high-order compact difference scheme. Using the properties of the tensor product and the discrete Fourier sine transform method, the original problem is solved by splitting it into independent small tridiagonal subsystems. Numerical examples with impedance boundary conditions are used to verify the feasibility and accuracy of the proposed algorithm. Results demonstrate that the algorithm has a fourth- order convergence in and -norms, and costs less CPU calculation time and random access memory.展开更多
In this paper, the electromagnetic scattering from a rectangular large open cavity embedded in an infinite ground plane is studied. By introducing a nonlocal artificial boundary condition, the scattering problem from ...In this paper, the electromagnetic scattering from a rectangular large open cavity embedded in an infinite ground plane is studied. By introducing a nonlocal artificial boundary condition, the scattering problem from the open cavity is reduced to a bounded domain problem. A compact fourth order finite difference scheme is then proposed to discrete the cavity scattering model in the rectangular domain, and a special treatment is enforced to approximate the boundary condition, which makes truncation errors reach (.9(h4) in the whole computational domain. A fast algorithm, exploiting the discrete Fourier transfor- mation in the horizontal and a Gaussian elimination in the vertical direction, is employed, which reduces the discrete system to a much smaller interface system. An effective pre- conditioner is presented for the BICGstab iterative solver to solve this interface system. Numerical results demonstrate the remarkable accuracy and efficiency of the proposed method. In particular, it can be used to solve the cavity model for the large wave number up to 600π.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No:10272040) and Doctor Foundation of Education Ministry (Grant No:20050294003)
文摘A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional explicit-implicit The treatment of equations. The third-order mixed scheme is employed the three-dimensional for time integration. non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.
基金the National Natural Science Foundation of China
文摘A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
文摘A theoretical model for identica l coherent structures in the wall region of a turbulent boundary layer was propo sed, using the idea of general resonant triad of the hydrodynamic stability. The evolution of the structures in the wall region of a turbulent boundary layer wa s studied by combining the compact finite differences of high numerical accuracy and the Fourier spectral hybrid method for solving the three dimensional Navier -Stokes equations. In this method, the third order mixed explicit-implicit sch eme was applied for the time integration. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, an d the sixth-order center compact schemes for the derivatives in spectral space were introduced, respectively. The fourth-order compact schemes satisfied by th e velocities and pressure in spectral space was derived. As an application, the method was implemented to the wall region of a turbulent boundary to study the e volution of identical coherent structures. It is found that the numerical result s are satisfactory.
文摘Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundary value problems. Finite difference method is widely applied to solving these problems due to its ease of use. However, when the wave number is large, the pollution effects are still a major difficulty in obtaining accurate numerical solutions. We develop a fast algorithm for solving three-dimensional Helmholtz boundary problems with large wave numbers. The boundary of computational domain is discrete based on high-order compact difference scheme. Using the properties of the tensor product and the discrete Fourier sine transform method, the original problem is solved by splitting it into independent small tridiagonal subsystems. Numerical examples with impedance boundary conditions are used to verify the feasibility and accuracy of the proposed algorithm. Results demonstrate that the algorithm has a fourth- order convergence in and -norms, and costs less CPU calculation time and random access memory.
基金Acknowledgments. The research of the second author was supported by the FRG grant of the Hong Kong Baptist University (No. FRG/08-09/II-35). The research of the third author was supported by the FRG grant of the Hong Kong Baptist University, the GIF Grants of Hong Kong Research Grants Council, and the Collaborative Research Fund of National Science Foundation of China (NSFC) under Grant No. G10729101,
文摘In this paper, the electromagnetic scattering from a rectangular large open cavity embedded in an infinite ground plane is studied. By introducing a nonlocal artificial boundary condition, the scattering problem from the open cavity is reduced to a bounded domain problem. A compact fourth order finite difference scheme is then proposed to discrete the cavity scattering model in the rectangular domain, and a special treatment is enforced to approximate the boundary condition, which makes truncation errors reach (.9(h4) in the whole computational domain. A fast algorithm, exploiting the discrete Fourier transfor- mation in the horizontal and a Gaussian elimination in the vertical direction, is employed, which reduces the discrete system to a much smaller interface system. An effective pre- conditioner is presented for the BICGstab iterative solver to solve this interface system. Numerical results demonstrate the remarkable accuracy and efficiency of the proposed method. In particular, it can be used to solve the cavity model for the large wave number up to 600π.