摘要
着重证明了:(1)设X是meso紧空间,X=∪i∈NFi,Fi为相对于X的基-meso紧闭子集,则X是基-meso紧的.(2)X是基-meso紧空间,若MX是Fσ集,且ω(M)=ω(X),则M为基-meso紧空间的.(3)设f:X→Y是基-meso紧映射,ω(X)≥ω(Y),如果Y是正规的基-meso紧空间,那么X是基-meso紧空间.
In this paper,it was proved that:(i) If X is mesocompact and {Fi}i∈N is a point finite closed cover of X,and each Fi(i∈N) is a closed base-mesocompact subspace relative to X,then X is base-mesocompact;(ii) Let X be base-mesocompact.If MX is an Fσ set with ω(M)=ω(X),then X is base-mesocompact;(iii) Let Y be a base-countably space and f:X→Y be a base-mesocompact mapping and ω(M)≥ω(X),if Y is normal then X is base-mesocompact.
出处
《佳木斯大学学报(自然科学版)》
CAS
2013年第1期142-143,146,共3页
Journal of Jiamusi University:Natural Science Edition
基金
安徽省高等学校省级优秀青年人才基金项目资助(2010SQRL158)