Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different...Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.展开更多
We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-ba...We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged It6 stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged lt6 equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus- trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.展开更多
The paper presents statistical analysis of combined sensor noise-immunity while recording fluctuating tone against underwater dynamic noise background. The experimeatal data used for the analysis have been collected b...The paper presents statistical analysis of combined sensor noise-immunity while recording fluctuating tone against underwater dynamic noise background. The experimeatal data used for the analysis have been collected by a pair of four-component combined sensors centered at two depths, 150 and 300 m in deep water. Expressions for combined sensor signal- to-noise ratio (SNR) for cross-spectral levels of signal and noise for both wide and narrow frequency bands have been derived. A combined sensor gain has been introduced in terms of ordinary single-point coherence function between acoustic pressure and particle velocity in acoustic wave. The estimates obtained experimentally evidence that SNR for a combined sensor with multiplicative data processing may exceed SNR for a hydrophone-based sensor by 15 to 16 dB at most for the horizontal channel of the combined sensor, and by 30 dB at most for the vertical channel (when opposite energy flows of signal and noise compensate one another).展开更多
The first-passage failure of Duffing oscillator with the delayed feedback control under the combined harmonic and white-noise excitations is investigated. First, the time-delayed feedback control force is expressed ap...The first-passage failure of Duffing oscillator with the delayed feedback control under the combined harmonic and white-noise excitations is investigated. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged It? stochastic differential equations for the system are derived by using the stochastic averaging method. A backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of the first-passage time are established. Finally, the conditional reliability function, the conditional probability density and moments of the first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. The effects of time delay in feedback control force on the conditional reliability function, conditional probability density and moments of the first-passage time are analyzed. The validity of the proposed method is confirmed by digital simulation.展开更多
Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity insp...Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.展开更多
We studied the feedback maximization of reliability of multi-degree-of-freedom (MDOF) quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. First, the partially averaged Ito equat...We studied the feedback maximization of reliability of multi-degree-of-freedom (MDOF) quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. First, the partially averaged Ito equations are derived by using the stochastic averaging method for quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. Then, the dynamical programming equation and its boundary and final time conditions for the control problems of maximizing the reliability is established from the partially averaged equations by using the dynamical programming principle. The nonlinear stochastic optimal control for maximizing the reliability is determined from the dynamical programming equation and control constrains. The reliability function of optimally controlled systems is obtained by solving the final dynamical programming equation. Finally, the application of the proposed procedure and effectiveness of the control strategy are illustrated by using an example.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004the National Natural Science Foundation of China under Grant 52177086+2 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011408the Science and Technology Program of Guangzhou under Grant 201904010215the Talent Recruitment Project of Guangdong under Grant 2017GC010467.
文摘Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.
基金Project supported by the National Natural Science Foundation of China(Nos.10772159 and 10802030)the Research Fund for Doctoral Program of Higher Education of China(No.20060335125)
文摘We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged It6 stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged lt6 equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus- trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.
文摘The paper presents statistical analysis of combined sensor noise-immunity while recording fluctuating tone against underwater dynamic noise background. The experimeatal data used for the analysis have been collected by a pair of four-component combined sensors centered at two depths, 150 and 300 m in deep water. Expressions for combined sensor signal- to-noise ratio (SNR) for cross-spectral levels of signal and noise for both wide and narrow frequency bands have been derived. A combined sensor gain has been introduced in terms of ordinary single-point coherence function between acoustic pressure and particle velocity in acoustic wave. The estimates obtained experimentally evidence that SNR for a combined sensor with multiplicative data processing may exceed SNR for a hydrophone-based sensor by 15 to 16 dB at most for the horizontal channel of the combined sensor, and by 30 dB at most for the vertical channel (when opposite energy flows of signal and noise compensate one another).
基金supported by the National Natural Science Foundation of China (Grant Nos. 10932009, 11072212 and 50905051)Key Discipline of the Ocean Mechatronic Equipments Technology Foundation
文摘The first-passage failure of Duffing oscillator with the delayed feedback control under the combined harmonic and white-noise excitations is investigated. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged It? stochastic differential equations for the system are derived by using the stochastic averaging method. A backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of the first-passage time are established. Finally, the conditional reliability function, the conditional probability density and moments of the first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. The effects of time delay in feedback control force on the conditional reliability function, conditional probability density and moments of the first-passage time are analyzed. The validity of the proposed method is confirmed by digital simulation.
基金supported by the National Natural Science Foundation of China(Nos.61403146 and 61603105)the Fundamental Research Funds for the Central Universities(No.2015ZM128)the Science and Technology Program of Guangzhou in China(Nos.201707010054 and 201704030072)
文摘Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.
基金Project supported by the National Natural Science Foundation of China (No. 10772159)the Research Fund for the Doctoral Program of Higher Education of China (No. 20060335125)the Zhejiang Provincial Nature Science Foundation of China (No. Y7080070)
文摘We studied the feedback maximization of reliability of multi-degree-of-freedom (MDOF) quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. First, the partially averaged Ito equations are derived by using the stochastic averaging method for quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. Then, the dynamical programming equation and its boundary and final time conditions for the control problems of maximizing the reliability is established from the partially averaged equations by using the dynamical programming principle. The nonlinear stochastic optimal control for maximizing the reliability is determined from the dynamical programming equation and control constrains. The reliability function of optimally controlled systems is obtained by solving the final dynamical programming equation. Finally, the application of the proposed procedure and effectiveness of the control strategy are illustrated by using an example.