摘要
数学形态学是一种非线性信号处理方法,不同于其他信号处理方法,数学形态学变换完全在时域中进行,无需进行时域和频域的转换,运算简单,速度快。工程现场拾取的振动信号往往含有大量噪声干扰,本文采用开闭和闭开的形态学组合滤波方法对振动信号进行处理。通过仿真信号和实测振动信号的处理结果表明,形态学组合滤波方法不仅能保留信号中的低频成分,具有优良的低通特性,同时处理后的信号具有相位保持的优点,对于脉冲干扰或白噪声均真有良好的抑制作用。
Mathematical morphology is a nonlinear signal processing method. Different from other signal processing methods, mathematical morphology is entirely in the time domain without the transforming of the signal from the time domain to frequency domain. It is simple and fast in speed of operation. The actual signal always contains a lot of noise. The morphological filter combined by open - closing and close - opening operations is adopted to process the vibration signal. Then the simulated and actual vibration signals are processed by morphological filter. The experimental results show that the morphological filter can maintain the low frequency components. It has a good low-pass characteristic. At the same time, the processed signal keeps its original phase, and the impulse noise and white noise are suppressed effectively.
出处
《科技视界》
2014年第27期157-158,共2页
Science & Technology Vision
关键词
形态学
组合滤波
振动信号
低通
降噪
Morphology
Combined filtering
Vibration signal
Low-pass
Noise suppressing