Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide t...Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network. Another is the mode of inter-cluster communication. In this paper, an energy-balanced unequal clustering (EBUC) protocol is proposed and evaluated. By using the particle swarm optimization (PSO) algorithm, EBUC partitions all nodes into clusters of unequal size, in which the clusters closer to the base station have smaller size. The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided. For inter-cluster communication, EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads. Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60672137)教育部博士点基金项目(SpecializedResearch Fund for the Doctoral Program of Higher Education of China under Grant No.20060497015)
基金supported by the Ph.D.Programs Foundation of Ministry of Education of China (20060611010)the National Basic Research Program of China (2007CB311005)the National Nature Science Foundation of China (60905066)
文摘Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network. Another is the mode of inter-cluster communication. In this paper, an energy-balanced unequal clustering (EBUC) protocol is proposed and evaluated. By using the particle swarm optimization (PSO) algorithm, EBUC partitions all nodes into clusters of unequal size, in which the clusters closer to the base station have smaller size. The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided. For inter-cluster communication, EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads. Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.