期刊文献+

基于TEEN协议和BP神经网络的WSN数据融合模型 被引量:6

WSN data aggregation model based on TEEN protocol and BP neural network
下载PDF
导出
摘要 针对无线传感网感知数据中含有大量无效或冗余数据的现象,提出了一种基于TEEN协议和BP(back propagation)神经网络的数据融合模型。该模型利用三层BP神经网络描述簇结构,通过TEEN阈值过滤非必要信息,在簇结构信息传输过程中运用神经网络功能函数处理大量感知数据,从中提取感知数据的特征值并转发至汇聚节点。实验仿真表明,该模型无论在数据通信量、使用寿命及网络消耗上都优于TEEN协议,在降低网络通信量和网络能耗的同时提升了网络的使用寿命,大大提升了数据采集的效率和性能。 In view of the phenomenon that the wireless sensor network has a large number of invalid or redundant data, this paper proposed a data fusion model based on TEEN protocol and BP ( back propagation) neural network. The model used three layer-based BP neural network to describe the cluster structure, and filtered unnecessary information through a TEEN threshold. During the process of information transmission, the performance function of neural network was used to deal with large amounts of sensing data, where feature value of sensing data was extracted and transmitted to the sink node. Experimen- tal results show that the proposed model is superior to the TEEN protocol on data traffic, life cycle and network consumption. As a result, the life cycle of the proposed model is improved while reducing network traffic and network energy consumption. Hence, both the efficiency and performance of data collection are greatly improved.
出处 《计算机应用研究》 CSCD 北大核心 2017年第8期2486-2489,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61402236 61373064) 江苏省"六大人才高峰"项目(2015-DZXX-015 2013-DZXX-019) 江苏省产学研前瞻性联合研究项目(BY2014007-2) 公益性行业(气象)科研专项资助项目(GYHY201106037) 江苏省农业气象重点实验室开放基金资助项目(KYQ1309)
关键词 无线传感网 BP神经网络 分簇协议 wireless sensor network BP neural networks clustering protocol
  • 相关文献

参考文献3

二级参考文献30

  • 1李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:371
  • 2Intanagonwiwat C,Govindan R,Estrin D.Directed Diffusion:a Scalable and Robust Communication Paradigm for Sensor Networks[C]//New York:MobiCom'00,2000:56-67. 被引量:1
  • 3Andr L L de Aquino,Carlos M S Figueiredo,Eduardo F Nakamura,et al.Data Stream Based Algorithms for Wireless Sensor Networks Applications[C]//Ontario:21st International Conference on Advanced Networking and Applications(AINA'07),2007:869-876. 被引量:1
  • 4Heinzelman W,Chandrakasan A,Balakrishnan H.Energy-Efficient Communication Protocols for Wireless Microsensor Networks[C]// Proceedings of 33rd Hawaii International Conference on Systems Science,Washington,DC,2000:8020-8030. 被引量:1
  • 5Reznik L,Von Pless G,AI Karim T.Intelligent Protocols Based on Sensor Signal Change Detection[C]//Proceedings of Systems Communications,2005:443-448. 被引量:1
  • 6van Norden W,de Jong J,Bolderheij F,et al.Intelligent task Scheduling in Sensor Networks[C]//Proceedings of 8th International Conference on Information Fusion,2005. 被引量:1
  • 7Julio Barbancho,Carlos León,F J Molina,et al.Using Artificial Intelligence in Routing Schemes for Wireless Networks[J].Computer Communications,2007,(30):2802-2811. 被引量:1
  • 8Wen-Tsai Sung.Employed BPN to Multi-Sensors Data Fusion for Environment Monitoring Services[J].Autonomic and Trusted Computing,2009,(6):149-163. 被引量:1
  • 9Omid O,Judith D.Neural Networks and Pattern Recognition[M].San Diego:Academic Press,1998. 被引量:1
  • 10Heinzelman W.Application-Specific Protocol Architectures for Wireless Networks[D].MIT,2000. 被引量:1

共引文献77

同被引文献56

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部