As structural materials, closed-cell aluminum foams possess obvious advantages in product dimension, strength and process economics compared with open cell aluminum foams. However, as a kind of structure-function inte...As structural materials, closed-cell aluminum foams possess obvious advantages in product dimension, strength and process economics compared with open cell aluminum foams. However, as a kind of structure-function integration materials, the application of closed-cell aluminum foams has been restricted greatly in acoustic fields due to the difficulty of sound wave penetration. It was reported that closed-cell foams with macrostructures have important effect on the propagation of sound waves. To date, the relationship between macrostructures and acoustic properties of commercially pure closedcell aluminum foams is ambiguous. In this work, different perforation and air gap types were designed for changing the macrostructures of the foam. Meanwhile, the effect of macrostructures on the sound absorption coefficient and sound reduction index were investigated. The results showed that the foams with half-hole exhibited excellent sound absorption and sound insulation behaviors in high frequency range(〉2500 Hz). In addition, specimens with air gaps showed good sound absorption properties in low frequency compared with the foams without air gaps. Based on the experiment results, propagation structural models of sound waves in commercially pure closed-cell aluminum foams with different macrostructures were built and the influence of macrostructures on acoustic properties was discussed.展开更多
The closed-cell aluminum foams (specimenρ=0.31 g/cm3, diameter of 100 mm, and thickness of 20 mm for sound absorption testing; specimenρ=0.51 g/cm3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for ...The closed-cell aluminum foams (specimenρ=0.31 g/cm3, diameter of 100 mm, and thickness of 20 mm for sound absorption testing; specimenρ=0.51 g/cm3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for sound insulation testing) were prepared by the method of molten body transitional foaming process. Its sound absorption property under frequency of 160-2 000 Hz and the sound insulation property under frequency of 100-4 000 Hz were tested. The sound absorption results show that the sound absorption property is much better under middle frequencies than that under low and high frequencies. The sound absorption coefficient climbs when frequency increases from 160 Hz to 800 Hz and then drops when frequency is increased from 800 Hz to 2 000 Hz. The function of the sound absorption mainly depends on the Helmholtz resonator, the microphone as well as cracks of closed-cell aluminum foam. The sound insulation experiments show that the sound reduction index (R) is small under low frequencies, and large under high frequencies; the weighted sound reduction index (Rw) and the highest sound reduction index (R) can reach around 30.8 dB and 43 dB, respectively.展开更多
基金supported financially by the National Natural Science Foundation of China (Nos. 51501053, 51325401 and U1660201)the National Magnetic Confinement Fusion Energy Research Program (No. 2014GB125006)Science and Technology Plan Projects of Hebei Province (No. 15211026)
文摘As structural materials, closed-cell aluminum foams possess obvious advantages in product dimension, strength and process economics compared with open cell aluminum foams. However, as a kind of structure-function integration materials, the application of closed-cell aluminum foams has been restricted greatly in acoustic fields due to the difficulty of sound wave penetration. It was reported that closed-cell foams with macrostructures have important effect on the propagation of sound waves. To date, the relationship between macrostructures and acoustic properties of commercially pure closedcell aluminum foams is ambiguous. In this work, different perforation and air gap types were designed for changing the macrostructures of the foam. Meanwhile, the effect of macrostructures on the sound absorption coefficient and sound reduction index were investigated. The results showed that the foams with half-hole exhibited excellent sound absorption and sound insulation behaviors in high frequency range(〉2500 Hz). In addition, specimens with air gaps showed good sound absorption properties in low frequency compared with the foams without air gaps. Based on the experiment results, propagation structural models of sound waves in commercially pure closed-cell aluminum foams with different macrostructures were built and the influence of macrostructures on acoustic properties was discussed.
基金Project (2002AA334060) supported by the Hi-tech Research and Development Program of China
文摘The closed-cell aluminum foams (specimenρ=0.31 g/cm3, diameter of 100 mm, and thickness of 20 mm for sound absorption testing; specimenρ=0.51 g/cm3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for sound insulation testing) were prepared by the method of molten body transitional foaming process. Its sound absorption property under frequency of 160-2 000 Hz and the sound insulation property under frequency of 100-4 000 Hz were tested. The sound absorption results show that the sound absorption property is much better under middle frequencies than that under low and high frequencies. The sound absorption coefficient climbs when frequency increases from 160 Hz to 800 Hz and then drops when frequency is increased from 800 Hz to 2 000 Hz. The function of the sound absorption mainly depends on the Helmholtz resonator, the microphone as well as cracks of closed-cell aluminum foam. The sound insulation experiments show that the sound reduction index (R) is small under low frequencies, and large under high frequencies; the weighted sound reduction index (Rw) and the highest sound reduction index (R) can reach around 30.8 dB and 43 dB, respectively.