从一个新的角度出发,对应每个观测值引入一个识别变量,基于识别变量的后验概率提出一种新的粗差定位的Bayes方法,并构造相应的均值漂移模型给出粗差估算的Bayes方法。由于识别变量的后验分布往往是复杂的、非标准形式的,为此设计一种MCM...从一个新的角度出发,对应每个观测值引入一个识别变量,基于识别变量的后验概率提出一种新的粗差定位的Bayes方法,并构造相应的均值漂移模型给出粗差估算的Bayes方法。由于识别变量的后验分布往往是复杂的、非标准形式的,为此设计一种MCMC(Markov Chain Monte Carlo)抽样方法以计算识别变量的后验概率值。最后对一边角网进行了计算和分析。试验表明,本文给出的探测粗差的Bayes方法不仅充分利用了先验信息,而且克服了以往粗差定位方法的模糊性以及探测标准选择的问题,同时计算简便。展开更多
文摘从一个新的角度出发,对应每个观测值引入一个识别变量,基于识别变量的后验概率提出一种新的粗差定位的Bayes方法,并构造相应的均值漂移模型给出粗差估算的Bayes方法。由于识别变量的后验分布往往是复杂的、非标准形式的,为此设计一种MCMC(Markov Chain Monte Carlo)抽样方法以计算识别变量的后验概率值。最后对一边角网进行了计算和分析。试验表明,本文给出的探测粗差的Bayes方法不仅充分利用了先验信息,而且克服了以往粗差定位方法的模糊性以及探测标准选择的问题,同时计算简便。