期刊文献+

基于空间概率乘积核函数的图像分类算法 被引量:5

Image classification algorithm based on spatial probability product kernel
下载PDF
导出
摘要 针对词袋模型统计聚集算法忽略了编码矢量的其它统计特征信息及空间信息,并且只能与常用核函数相配合度量图像之间相似性的问题,该文提出一种基于空间概率乘积核函数的图像分类(SPPKBIG)算法。使用Parzen窗方法估计编码矢量所服从的概率密度分布,用来描述图像内容,使用空间概率乘积核函数构建图像之间的核矩阵,最后使用基于此核矩阵的支持向量机对图像进行分类。实验结果表明,SPPKBIC算法对15类场景数据集和MSRcv2数据集的平均分类正确率分别为84.1%和94.8%。 Aiming at the problems that the statistic pooling method using bag-of-words ( BoW) discards a lot of statistical and spatial information of coded vectors and only interacts with the standard kernel function to measure similarities of images,a spatial probability product kernel based image classification( SPPKBIC) algorithm is proposed here. The probability distributions of coded vectors are estimated by Parzen window method to describe images. The kernel matrices of images are calculated using the spatial probability product kernel function. Images are classified by support vector machines based on the kernel matrices. The experimental results show that the average classification accuracy of the SPPKBIG algorithm for scene 15 dataset and MSRcv2 dataset reach 84. 1% and 94. 8% respectively.
作者 杨赛 赵春霞
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第3期325-331,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金重大研究计划(9082030) 国家自然科学基金青年项目(61103059)
关键词 空间概率乘积核函数 图像分类 词袋 统计聚集算法 统计特征信息 空间信息 Parzen窗方法 概率密度分布 核矩阵 支持向量机 spatial probability product kernel image classification bag-of-words statistic pooling method statistical information spatial information Parzen window method probability distributions kernel matrices support vector machines
  • 相关文献

参考文献24

  • 1张琳波,王春恒,肖柏华,邵允学.基于Bag-of-phrases的图像表示方法[J].自动化学报,2012,38(1):46-54. 被引量:25
  • 2Ji Rongrong,Yao Hongxun,Liu Wei,et al.Taskdependent visualcodebook compression[J].IEEE Transactions on Image Processing,2012:21(4):2282-2293. 被引量:1
  • 3Boureau Y L,Boch F,LeCun Y,et al.Learning midlevel features for recognition[A].Proceedings of the 23rd International Conference on Computer Vision and Pattern Recognition[C].San Francisco,CA,USA:IEEE Computer Society,2010:1-8. 被引量:1
  • 4Liu Lingqiao,Wang Lei,Liu Xinwang.In defense of softassignment coding[A].Proceedings of the 13th International Conference on Computer Vision[C].Barcelona,Spain:IEEE Computer Society,2011:2486-2493. 被引量:1
  • 5Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[A].Proceedings of the 19th International Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE Computer Society,2006:2169-2178. 被引量:1
  • 6Cao Liujuan,Ji Rong,Gao Yue,et al.Weakly supervised sparse coding with geometric consistency pooling[A].Proceedings of the 25th International Conference on Computer Vision and Pattern Recognition[C].Providence,RI,USA:IEEE Computer Society,2012:3578-3585. 被引量:1
  • 7Duchenne O,Joulin A,Ponce J.A graphmatching kernel for object categorization[A].Proceedings of the 13th International Conference on Computer Vision[C].Barcelona,Spain:IEEE Computer Society,2011:1792-1799. 被引量:1
  • 8Yang Yi,Newsam S.Spatial pyramid cooccurrence for image classification[A].Proceedings of the 13th IEEE International Conference on Computer Vision[C].Barcelona,Spain:IEEE Computer Society,2011:1465-1472. 被引量:1
  • 9Liu D,Hua Gang,Viola P,et al.Integrated feature selection and higherorder spatial feature extraction for object categorization[A].Proceedings of the 21st International Conference on Computer Vision and Pattern Recognition[C].Anchorage,AK,USA:IEEE Computer Society,2008:1-8. 被引量:1
  • 10Feng Jiashi,Ni Bingbing,Tian Qi,et al.Geometric pnorm feature pooling for image classification[A].Proceedings of the 24th International Conference on Computer Vision and Pattern Recognition[C].Providence,RI,USA:IEEE Computer Society,2011:2609-2704. 被引量:1

二级参考文献54

  • 1Dias J, Plaza A. Hyperspectral unmixing geometrical, statistical and sparse regression-based approaches [ A ]. Proceedings of SPIE: Image and Signal Processing for Remote Sensing XVI [ C ]. Bellingham, USA: SPIE Press,2010. 被引量:1
  • 2Bobin J, Moudden Y, Starck J L, et al. Sparsity constraints for hyperspectral data analysis: Linear mixture model and beyond [ A ]. Proceedings of SPIE: Wavelets XIII [ C ]. Bellingham, USA : SPIE Press ,2009. 被引量:1
  • 3Iordache M D, Dias J, Plaza A. Umixing sparse hyperspectral mixtures [ A ]. First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing [ C ]. Grenoble, France : IEEE,2009 : 85-88. 被引量:1
  • 4Iordache M D, Plaza A, Dias J. On the use of spectral libraries to perform sparse unmixing of hyporspectral data [ A ]. IEEE GRSS Workshop on Hyperspeetral Image and Signal Processing: Evolution in Remote Sensing [ C ]. Reykjavik, Iceland : IEEE, 2010 : 1-4. 被引量:1
  • 5Iordache M D, Plaza A, Dias J. Recent developments in sparse hyperspectral unmixing [ A ]. IEEE International Geoscience and Remote Sensing Symposium [ C ]. Hawaii, USA : IEEE ,2010 : 1281-1284. 被引量:1
  • 6Dias J, Figueiredo M. Ahemating direction algorithms for constrained sparse regression : Application to hyperspectral unmixing [ A ]. First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing[ C ]. Grenoble, France : IEEE ,2009 : 1-4. 被引量:1
  • 7Candies E J, Wakin M, Boyd S. Enhancing sparsity by reweighted 11 minimization [ J ]. Journal of Fourier Analysis and Applications, 2008 ( 14 ) : 877-905. 被引量:1
  • 8Clark R N, Swayze G A, Wise R A, et al. USGS digital spectral library splib06a [ EB/OL ]. http ://speclab. cr. usgs. gov/spectral. lib06/. 2010-06. 被引量:1
  • 9Donoho D, Tsaig Y. Fast solution of 11 -norm minimization problems when the solution may be sparse [ J ]. IEEE Transactions on Information Theory, 2008, 54( 11 ) :4789-4811. 被引量:1
  • 10Shotton J, Blake A, Cipolla R. Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 30(7): 1270-1281. 被引量:1

共引文献2330

同被引文献32

  • 1潘晓东.人体信息技术在道路交通环境与安全性评价中的应用[J].中国公路学报,2001,14(z1):109-111. 被引量:33
  • 2罗良鑫,李相勇,段力.基于信息处理的道路限速设置探讨[J].人类工效学,2004,10(4):42-44. 被引量:5
  • 3唐琤琤.限速、车速与安全[J].公路交通科技,2005,22(3):97-100. 被引量:55
  • 4李娟,姬为宇,蔡加发.高速公路分段限速值研究[J].公路交通技术,2007,23(5):117-119. 被引量:11
  • 5Chacon M M I,Mendoza P J A. A PCNN-FCM time series classifier for texture segmentation [ A ]. 2011 Annual Meeting of the North American Fuzzy Information Processing Society [ C ]. El Paso, Texas, USA : IEEE,2011 : 1-6. 被引量:1
  • 6Cao Jie, Wu Di. Face recognition based on pulse coupled neural network [ A ]. 2009 International Conference on Information Engineering and Computer Science [ C ]. Wuhan, China: IEEE,2009 : 1-4. 被引量:1
  • 7Fan Huajun,Zhou Dongming, Nie Rencan, et al. Target face detection using pulse coupled neural network and skin color model[ A]. 2012 International Conference on Computer Science and Service System [ C ]. Nanjing, China: IEEE,2012:2185-2188. 被引量:1
  • 8Micheli-Tzanakou E, Sheikh H,Zhu B. Neural networks and blood cell identification [ J ]. Journal of Medical Systems, 1997,21 (4) :201-210. 被引量:1
  • 9Wei Shuo, Qu Hong, Hou Mengshu. Automatic image segmentation based on PCNN with adaptive threshold time constant [ J ]. Neurocomputing,2011,74 (9) : 1485 -1491. 被引量:1
  • 10Wang Haiqing, Ji Changying, Gu Baoxing, et al. A simplified pulse-coupled neural network for cucumber image segmentation[ A]. 2010 International Conference on Computational and Information Sciences (ICCIS) [ C ]. Chengdu, China : IEEE, 2010 : 1053 - 1057. 被引量:1

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部