In comparison to monolayer(1L),multilayer(ML)two-dimensional(2D)semiconducting transition metal dichalcogenides(TMDs)exhibit more application potential for electronic and optoelectronic devices due to their improved c...In comparison to monolayer(1L),multilayer(ML)two-dimensional(2D)semiconducting transition metal dichalcogenides(TMDs)exhibit more application potential for electronic and optoelectronic devices due to their improved current carrying capability,higher mobility,and broader spectral response.However,the investigation of devices based on wafer-scale ML-TMDs is still restricted by the synthesis of uniform and high-quality ML films.In this work,we propose a strategy of stacking MoS_(2) monolayers via a vacuum transfer method,by which one could obtain wafer-scale high-quality MoS_(2) films with the desired number of layers at will.The optical characteristics of these stacked ML-MoS_(2) films(>2L)indicate a weak interlayer coupling.The stacked MLMoS_(2) phototransistors show improved optoelectrical performances and a broader spectral response(approximately 300-1,000 nm)than that of 1L-MoS_(2).Additionally,the dual-gate ML-MoS_(2) transistors enable enhanced electrostatic control over the stacked ML-MoS_(2) channel,and the 3L and 4L thicknesses exhibit the optimal device performances according to the turning point of the current on/off ratio and the subthreshold swing.展开更多
Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra c...Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra costs to manage risk factors. In this article, we demonstrate that continuous monolayer graphene can be synthesized via chemical vapor deposition technique on Cu foils using industrially safe gas mixtures. Important factors, including the appropriate ratio of hydrogen flow and carbon precursor,pressure, and growth time are considered to obtain graphene films. Optical measurements and electrical transport measurements indicate graphene films are with comparable quality to other reports. Such continuous large area graphene can be synthesized under non-flammable and non-explosive conditions, which opens a safe and economical method for mass production of graphene. It is thereby beneficial for integration of graphene into semiconductor electronics.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1200500 and 2018YFA0703700)in part by the National Natural Science Foundation of China(No.61774042)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-07-E00077)Shanghai Municipal Science and Technology Commission(Nos.21DZ1100900 and 20ZR1403200).
文摘In comparison to monolayer(1L),multilayer(ML)two-dimensional(2D)semiconducting transition metal dichalcogenides(TMDs)exhibit more application potential for electronic and optoelectronic devices due to their improved current carrying capability,higher mobility,and broader spectral response.However,the investigation of devices based on wafer-scale ML-TMDs is still restricted by the synthesis of uniform and high-quality ML films.In this work,we propose a strategy of stacking MoS_(2) monolayers via a vacuum transfer method,by which one could obtain wafer-scale high-quality MoS_(2) films with the desired number of layers at will.The optical characteristics of these stacked ML-MoS_(2) films(>2L)indicate a weak interlayer coupling.The stacked MLMoS_(2) phototransistors show improved optoelectrical performances and a broader spectral response(approximately 300-1,000 nm)than that of 1L-MoS_(2).Additionally,the dual-gate ML-MoS_(2) transistors enable enhanced electrostatic control over the stacked ML-MoS_(2) channel,and the 3L and 4L thicknesses exhibit the optimal device performances according to the turning point of the current on/off ratio and the subthreshold swing.
文摘Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra costs to manage risk factors. In this article, we demonstrate that continuous monolayer graphene can be synthesized via chemical vapor deposition technique on Cu foils using industrially safe gas mixtures. Important factors, including the appropriate ratio of hydrogen flow and carbon precursor,pressure, and growth time are considered to obtain graphene films. Optical measurements and electrical transport measurements indicate graphene films are with comparable quality to other reports. Such continuous large area graphene can be synthesized under non-flammable and non-explosive conditions, which opens a safe and economical method for mass production of graphene. It is thereby beneficial for integration of graphene into semiconductor electronics.