期刊文献+

空心碳纳米球在锂离子电池中的性能

Properties of Hollow Carbon Nanospheres in Lithium Ion Batteries
下载PDF
导出
摘要 为了探究高性能的锂电池负极新型碳基材料,通过高温退火碳包铜纳米颗粒材料制备得到空心碳纳米球,该材料的平均粒径为20 nm,这比其他空心碳球的平均粒径都要小,碳层厚度为1~3 nm,喇曼强度比值为1.06,比表面积为300 m^2·g^(-1)。空心碳纳米球作为锂电池负极材料表现出出众的电化学性能,在186 mA·g^(-1)的电流密度下比容量达到400 mA·h·g^(-1),在不同的电流密度下具有良好的比容量,循环100次的容量保持率为100%,这些优异的电化学性能与空心碳纳米球的高比表面积、空心结构和非常小的粒径有关,这些结果表明空心碳纳米球是一种具有潜力的锂电池负极材料。 For the exploration of the novel carbon based anode materials for lithium batteries with good performances,the hollow carbon nanospheres were obtained by high temperature annealing the Cu-C core-shell nanoparticles.The average particle size of the hollow carbon nanospheres is20 nm and smaller than that of other hollow carbon spheres.The thickness of the carbon layer is1-3 nm,the Raman intensity ratio is 1.06,and the specific surface area is 300 m2·g-1.The hollow carbon nanospheres exhibit superior electrochemical performances used as anode materials for lithium batteries.The specific capacity reaches 400 mA·h·g-1 at the current density of186 mA·g-1.There are still good specific capacities at different current densities,and the capacity retention rate is 100%after 100 cycles.The excellent electrochemical properties of the hollow carbon nanospheres are related to the high specific surface area,hollow structure and very small particle size.These results indicate that the hollow carbon nanosphere is a promising anode material for lithium batteries.
出处 《微纳电子技术》 北大核心 2017年第4期243-248,共6页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(51074188)
关键词 锂离子电池 空心碳纳米球 化学气相沉积(CVD)法 负极材料 电化学性能 lithium ion battery hollow carbon nanosphere chemical vapor deposition(CVD) method anode material electrochemical property
  • 相关文献

参考文献3

二级参考文献50

  • 1张洪亮 雷海乐 唐永健 罗江山 李恺 邓晓臣.物理学报,2010,59:471-471. 被引量:1
  • 2Lu L, Chen X, Huang X, Lu K 2009 Science 323 607. 被引量:1
  • 3Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926. 被引量:1
  • 4王贵春, 袁建民2005 物理学报 52 970. 被引量:1
  • 5Rathmell A R, Wiley B J 2011 Adv. Mater. 23 4798. 被引量:1
  • 6Huaman J L C, Sato K, Kurita S, Matsumoto T, Jeyadevan B 2011 J. Mat. Chem. 21 7062. 被引量:1
  • 7Zhang B S, Xu B S, Xu Y, Gao F, Shi P J, Wu Y X 2011 Tribol. Int. 44 878. 被引量:1
  • 8Wang S L, Huang X L, He Y H, Huang H, Wu Y Q, Hou L Z, Liu X L, Yang T M, Zou J Huang B Y 2012 Carbon 50 2119. 被引量:1
  • 9Wang S L, He Y H, Liu X L, Huang H, Zou J, Song M, Huang B Y, Liu C T 2011 Nanotechnology 22 405704. 被引量:1
  • 10Luechinger N A, Athanassiou E K, Stark W J 2008 Nanotechnology 19 445201. 被引量:1

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部