Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are ...Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are obtained by phase-space reconstruction, and its attractor evolution is analyzed. The results indicate that the friction noise is chaotic because the largest Lyapunov exponent is positive. The phase trajectory of the friction noise follows a "convergence-stability-divergence" pattern during the friction process. The friction noise attractor begins forming in the running-in process, and the correlation dimension D increases gradually. In the stable process, the attractor remains steady, and D is stable. In the last step of the process, the attractor gradually disappears, and D decreases. The friction noise attractor is a chaotic attractor. Knowledge of the dynamic evolution of this attractor can help identify wear state changes from the running-in process to the steady and increasing friction processes.展开更多
In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play re...In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51375480)the Graduate Scientific Research Innovation Projects of Jiangsu Higher Education Institutions(Grant No.KYLX16_0527)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are obtained by phase-space reconstruction, and its attractor evolution is analyzed. The results indicate that the friction noise is chaotic because the largest Lyapunov exponent is positive. The phase trajectory of the friction noise follows a "convergence-stability-divergence" pattern during the friction process. The friction noise attractor begins forming in the running-in process, and the correlation dimension D increases gradually. In the stable process, the attractor remains steady, and D is stable. In the last step of the process, the attractor gradually disappears, and D decreases. The friction noise attractor is a chaotic attractor. Knowledge of the dynamic evolution of this attractor can help identify wear state changes from the running-in process to the steady and increasing friction processes.
文摘In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.