Mesenchymal stem cells(MSCs)are adult stem cells harboring self-renewal and multilineage differentiation potential that are capable of differentiating into osteoblasts,adipocytes,or chondrocytes in vitro,and regulatin...Mesenchymal stem cells(MSCs)are adult stem cells harboring self-renewal and multilineage differentiation potential that are capable of differentiating into osteoblasts,adipocytes,or chondrocytes in vitro,and regulating the bone marrow microenvironment and adipose tissue remodeling in vivo.The process of fate determination is initiated by signaling molecules that drive MSCs into a specific lineage.Impairment of MSC fate determination leads to different bone and adipose tissue-related diseases,including aging,osteoporosis,and insulin resistance.Much progress has been made in recent years in discovering small molecules and their underlying mechanisms control the cell fate of MSCs both in vitro and in vivo.In this review,we summarize recent findings in applying small molecules to the trilineage commitment of MSCs,for instance,genistein,medicarpin,and icariin for the osteogenic cell fate commitment;isorhamnetin,risedronate,and arctigenin for pro-adipogenesis;and atractylenolides and dihydroartemisinin for chondrogenic fate determination.We highlight the underlying mechanisms,including direct regulation,epigenetic modification,and post-translational modification of signaling molecules in the AMPK,MAPK,Notch,PI3K/AKT,Hedgehog signaling pathways etc.and discuss the small molecules that are currently being studied in clinical trials.The target-based manipulation of lineage-specific commitment by small molecules offers substantial insights into bone marrow microenvironment regulation,adipose tissue homeostasis,and therapeutic strategies for MSC-related diseases.展开更多
Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells...Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formationis a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and b HLH transcriptional factors.Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.展开更多
基金Supported by the National Natural Science Foundation of China,No.81573992
文摘Mesenchymal stem cells(MSCs)are adult stem cells harboring self-renewal and multilineage differentiation potential that are capable of differentiating into osteoblasts,adipocytes,or chondrocytes in vitro,and regulating the bone marrow microenvironment and adipose tissue remodeling in vivo.The process of fate determination is initiated by signaling molecules that drive MSCs into a specific lineage.Impairment of MSC fate determination leads to different bone and adipose tissue-related diseases,including aging,osteoporosis,and insulin resistance.Much progress has been made in recent years in discovering small molecules and their underlying mechanisms control the cell fate of MSCs both in vitro and in vivo.In this review,we summarize recent findings in applying small molecules to the trilineage commitment of MSCs,for instance,genistein,medicarpin,and icariin for the osteogenic cell fate commitment;isorhamnetin,risedronate,and arctigenin for pro-adipogenesis;and atractylenolides and dihydroartemisinin for chondrogenic fate determination.We highlight the underlying mechanisms,including direct regulation,epigenetic modification,and post-translational modification of signaling molecules in the AMPK,MAPK,Notch,PI3K/AKT,Hedgehog signaling pathways etc.and discuss the small molecules that are currently being studied in clinical trials.The target-based manipulation of lineage-specific commitment by small molecules offers substantial insights into bone marrow microenvironment regulation,adipose tissue homeostasis,and therapeutic strategies for MSC-related diseases.
基金supported by National Natural Science Foundation of China (Grant Nos. 31370215, 31228002 and 31970167)International Scientific and Technological Cooperation Project of Science and Technology Department of Zhejiang Province (Grant No. 2013C24007)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No. Z3110004)Ph.D.Programs Foundation of Ministry of Education of China (Grant No. 20120101110079)
文摘Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formationis a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and b HLH transcriptional factors.Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.