The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. F...The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS 1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance oftelomere stability.展开更多
When mining extra-thick coal seams,the main cause of strong ground pressure are the high-level thick and hard strata,but as yet there is no active and effective control technology.This paper proposes the method of sub...When mining extra-thick coal seams,the main cause of strong ground pressure are the high-level thick and hard strata,but as yet there is no active and effective control technology.This paper proposes the method of subjecting hard roofs to ground fracturing,and physical simulation is used to study the control effect of ground fracturing on the strata structure and energy release.The results show that ground fracturing changes the structural characteristics of the strata and reduces the energy release intensity and the spatial extent of overburden movement,thereby exerting significant control on the ground pressure.The Datong mining area in China is selected as the engineering background.An engineering test was conducted on site by ground horizontal well fracturing,and a 20-m-thick hard rock layer located 110 m vertically above the coal seam was targeted as the fracturing layer.On-site microseismic monitoring shows that the crack propagation length is up to 216 m and the height is up to 50 m.On-site mine pressure monitoring shows that(1)the roadway deformation is reduced to 100 mm,(2)the periodic weighting characteristics of the hydraulic supports are not obvious,and(3)the ground pressure in the working face is controlled significantly,thereby showing that the ground fracturing is successful.Ground fracturing changed the breaking characteristics of the high-level hard strata,thereby helping to ameliorate the stress concentration in the stope and providing an effective control approach for hard rock.展开更多
The purpose of this study was to develop a closed-loop machine vision system for wire electrical discharge machining(EDM)process control.Excessive wire wear leading to wire breakage is the primary cause of wire EDM pr...The purpose of this study was to develop a closed-loop machine vision system for wire electrical discharge machining(EDM)process control.Excessive wire wear leading to wire breakage is the primary cause of wire EDM process failures.Such process interruptions are undesirable because they affect cost efficiency,surface quality,and process sustainability.The developed system monitors wire wear using an image-processing algorithm and suggests parametric changes according to the severity of the wire wear.Microscopic images of the wire electrode coming out from the machining zone are fed to the system as raw images.In the proposed method,the images are preprocessed and enhanced to obtain a binary image that is used to compute the wire wear ratio(WWR).The input parameters that are adjusted to recover from the unstable conditions that cause excessive wire wear are pulse off time,servo voltage,and wire feed rate.The algorithm successfully predicted wire breakage events.In addition,the alternative parametric settings proposed by the control algorithm were successful in reducing the wire wear to safe limits,thereby preventing wire breakage interruptions.展开更多
文摘The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS 1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance oftelomere stability.
基金This work was supported by the State Key Research Development Program of China(Grant No.2018YFC0604500,2018YFC0604506)by the China Postdoctoral Science Foundation(Grant No.2019M651080)+3 种基金as an applied basic research Project of Shanxi Province(Grant No.201901D211030)by the Scientific,Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP)(Grant No.2019L0208)as a Major Program in Shanxi Province(Grant No.20191101015)as a Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402).
文摘When mining extra-thick coal seams,the main cause of strong ground pressure are the high-level thick and hard strata,but as yet there is no active and effective control technology.This paper proposes the method of subjecting hard roofs to ground fracturing,and physical simulation is used to study the control effect of ground fracturing on the strata structure and energy release.The results show that ground fracturing changes the structural characteristics of the strata and reduces the energy release intensity and the spatial extent of overburden movement,thereby exerting significant control on the ground pressure.The Datong mining area in China is selected as the engineering background.An engineering test was conducted on site by ground horizontal well fracturing,and a 20-m-thick hard rock layer located 110 m vertically above the coal seam was targeted as the fracturing layer.On-site microseismic monitoring shows that the crack propagation length is up to 216 m and the height is up to 50 m.On-site mine pressure monitoring shows that(1)the roadway deformation is reduced to 100 mm,(2)the periodic weighting characteristics of the hydraulic supports are not obvious,and(3)the ground pressure in the working face is controlled significantly,thereby showing that the ground fracturing is successful.Ground fracturing changed the breaking characteristics of the high-level hard strata,thereby helping to ameliorate the stress concentration in the stope and providing an effective control approach for hard rock.
文摘The purpose of this study was to develop a closed-loop machine vision system for wire electrical discharge machining(EDM)process control.Excessive wire wear leading to wire breakage is the primary cause of wire EDM process failures.Such process interruptions are undesirable because they affect cost efficiency,surface quality,and process sustainability.The developed system monitors wire wear using an image-processing algorithm and suggests parametric changes according to the severity of the wire wear.Microscopic images of the wire electrode coming out from the machining zone are fed to the system as raw images.In the proposed method,the images are preprocessed and enhanced to obtain a binary image that is used to compute the wire wear ratio(WWR).The input parameters that are adjusted to recover from the unstable conditions that cause excessive wire wear are pulse off time,servo voltage,and wire feed rate.The algorithm successfully predicted wire breakage events.In addition,the alternative parametric settings proposed by the control algorithm were successful in reducing the wire wear to safe limits,thereby preventing wire breakage interruptions.