An initial-boundary values problem in the half space (0, ∞ ) for p-system with artificial viscosity is investigated. It is shown that there exists a boundary layer solution. It is further proved that the boundary l...An initial-boundary values problem in the half space (0, ∞ ) for p-system with artificial viscosity is investigated. It is shown that there exists a boundary layer solution. It is further proved that the boundary layer solution is nonlinear stable with arbitrarily large perturbation. The proof is given by an elementary energy method.展开更多
This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-s...This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]展开更多
基金Partially supported by NSFC-NSAF (10676037) and NUST
文摘An initial-boundary values problem in the half space (0, ∞ ) for p-system with artificial viscosity is investigated. It is shown that there exists a boundary layer solution. It is further proved that the boundary layer solution is nonlinear stable with arbitrarily large perturbation. The proof is given by an elementary energy method.
基金supported by the "Fundamental Research Funds for the Central Universities"the National Natural Science Foundation of China (10871151)
文摘This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]