The analytic perturbation solutions to the motions of a planetary orbiter given in this paper are effective for 0e1, where e is the orbital eccentricity of the orbiter. In the solution, it is assumed that the rotation...The analytic perturbation solutions to the motions of a planetary orbiter given in this paper are effective for 0e1, where e is the orbital eccentricity of the orbiter. In the solution, it is assumed that the rotation of the central body is slow, and its astronomical background is clear. Examples for such planets in the solar system are Venus and Mercury. The perturbation solution is tested numerically on two Venusian orbiters with eccentric orbits, PVO and Magellan, and found to be effective.展开更多
Analogous to a black body, the empty space surrounding a massive body is theoretically envisioned to radiate thermal gravitational energy in accordance with Planck’s radiation law. Gravitational black-body radiation ...Analogous to a black body, the empty space surrounding a massive body is theoretically envisioned to radiate thermal gravitational energy in accordance with Planck’s radiation law. Gravitational black-body radiation offers a remarkably compelling solution to the deep, long-standing questions concerning galaxy rotation curves and strong gravitational lensing by large astrophysical systems, without the need to impose a dark matter or massive graviton hypothesis. As with the quantized orbits of the electron in the atom and the classical physics of Maxwell’s theory of electromagnetism, gravitational black-body radiation represents a truly profound break from the classical physics of Einstein’s general theory of relativity and the emergence of the fundamental quantum nature of gravity.展开更多
文摘The analytic perturbation solutions to the motions of a planetary orbiter given in this paper are effective for 0e1, where e is the orbital eccentricity of the orbiter. In the solution, it is assumed that the rotation of the central body is slow, and its astronomical background is clear. Examples for such planets in the solar system are Venus and Mercury. The perturbation solution is tested numerically on two Venusian orbiters with eccentric orbits, PVO and Magellan, and found to be effective.
文摘Analogous to a black body, the empty space surrounding a massive body is theoretically envisioned to radiate thermal gravitational energy in accordance with Planck’s radiation law. Gravitational black-body radiation offers a remarkably compelling solution to the deep, long-standing questions concerning galaxy rotation curves and strong gravitational lensing by large astrophysical systems, without the need to impose a dark matter or massive graviton hypothesis. As with the quantized orbits of the electron in the atom and the classical physics of Maxwell’s theory of electromagnetism, gravitational black-body radiation represents a truly profound break from the classical physics of Einstein’s general theory of relativity and the emergence of the fundamental quantum nature of gravity.