将基于独立成分分析(independent component analysis,ICA)技术的盲分解方法(blind signal separation,BSS)应用于遥感混合像元的定量分解,解决了幅度不确定性问题,实现了从高光谱数据中同时得到定量的组分光谱信息和组分权重信息。通...将基于独立成分分析(independent component analysis,ICA)技术的盲分解方法(blind signal separation,BSS)应用于遥感混合像元的定量分解,解决了幅度不确定性问题,实现了从高光谱数据中同时得到定量的组分光谱信息和组分权重信息。通过数值模拟实验提出了光谱反演区间的选择方法,进一步完善了该算法,且讨论了算法的稳健性。以陕西省横山县为试验区,从HYPERION高光谱影像中反演了各像元的植被覆盖度,并利用SPOT5影像进行了精度验证,结果表明该方法具有较高的精度。展开更多
There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME a...There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.展开更多
文摘将基于独立成分分析(independent component analysis,ICA)技术的盲分解方法(blind signal separation,BSS)应用于遥感混合像元的定量分解,解决了幅度不确定性问题,实现了从高光谱数据中同时得到定量的组分光谱信息和组分权重信息。通过数值模拟实验提出了光谱反演区间的选择方法,进一步完善了该算法,且讨论了算法的稳健性。以陕西省横山县为试验区,从HYPERION高光谱影像中反演了各像元的植被覆盖度,并利用SPOT5影像进行了精度验证,结果表明该方法具有较高的精度。
文摘There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.