期刊文献+

一种改进的最大熵方法在船舶辐射噪声盲分离中的应用 被引量:1

The Blind Signal Separation of Ship-Radiated Noise Using Improved Maximun Entropy Approach
下载PDF
导出
摘要 对于船舶辐射噪声信号的盲信号分离(BSS)问题,由于常用的最小互信息(MMI)方法需要估计输出信号的高阶累积量,这对于非高斯、非平稳的船舶辐射噪声来说信号估计的精度将会降低.为此,本文验证了最大熵(ME)方法在处理此类复杂信号时能作为最佳对比函数的条件,并在此基础上用高斯混合模型来估计信号的概率分布,提高了信号概率密度估计的精度;同时在算法的迭代过程中使用自然梯度下降法代替随机梯度下降法,提高了算法的收敛速度.通过对船舶辐射噪声信号的盲分离实验,证明了此分离算法是有效的. When sources are non-Gaussian and non-stationary such as ship-radiated noise, the blind signal separation(BSS) is not efficient because the higher-order cumulants of the sources can not be estimated accurately in Minimum Mutual Information (MMI) approach. Maximum Entropy (ME) approach was demonstrated to be a better contrast function when the p.d.f. of sources is complex. And the Gaussian mixture model was presented to estimate the p.d.f. of the sources based on this ME approach. Moreover,a natural gradient descent algorithm instead of stochastic gradient descent was introduced to speed the convergence. The experiment of separating ship-radiated noise demonstrates that the ME contrast function based on Gaussian mixture model is successful.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第12期1962-1965,1971,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(30170274) 国防科技重点实验室基金资助项目(51444100304JW0301)
关键词 盲信号分离 最大熵 最小互信息 高斯混合模型 船舶噪声 辐射噪声 blind signal separation (BSS) maximum entropy (ME) minimum mutual information (MMI) Gaussian mixture model ships noise radiated noise
  • 相关文献

参考文献7

  • 1Yang H H, Amari S. Adaptive on-line learning algorithms for blind separation: maximum entropy and minimum mutual information[J]. Neural Computation, 1997,7:1457-1482. 被引量:1
  • 2Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7:1129-1159. 被引量:1
  • 3Fabian J, Bauer C H. Comparison of maximum entropy and minimal mutual information in a nonlinear setting[J]. Signal Processing, 2002, (82): 971-980. 被引量:1
  • 4Petteri P. Blind source separation using algorithmic information theory[J]. Neurocomputing,1998, (22): 35-48. 被引量:1
  • 5Comon P. Independent component analysis, a new concept?[J] Signal Processing, 1994, 36:287-314. 被引量:1
  • 6Zhao Yunxin, Zhuang Xinhua. Gaussian mixture density modeling of non-Gaussian source for autoregressive process[J]. IEEE Transactions on Signal Processing, 1995, 43(4):894-903. 被引量:1
  • 7Park H, Amari S, Fukuizu K. Adaptive natural gradient learning algorithms for various stochastic models[J]. Neural Networks, 2000, (13): 755-764. 被引量:1

同被引文献10

  • 1Juteen C,Herault J.Blind separation of sources,part 1:An adaptive algorithm based on neuromimetic structure [J].Signal processing,1991,24:1-10. 被引量:1
  • 2Nabil Charkani,Yannick Deville.Self-adaptive separation of convolutively mixed signals with a recursive structure.Part I:Stability analysis and optimization of asymptotic behaviour [J].Signal Processing,1999,73:225-254. 被引量:1
  • 3Hoang-Lan Nguyen Thi,Christian Jutten.Blind source separation for convolution mixtures [J].Signal Processing,1995,45:209-229. 被引量:1
  • 4G Gelle,M Colas,C Servière.Blind Source Separation:A New Pre-Processing Tool for Rotating Machines Monitoring?[J].IEEE Transactions on Instrumentation and Measurement,2003,52(3):790-795. 被引量:1
  • 5G Gelle,M Colas,G Delaunay.Blind soures separation applied to rotating machines monitoring by acoustical and vibrations analysis [J].Mechanical Systems and Signal Processing,2000,14(3):427-442. 被引量:1
  • 6Bell A J,Sejnowski T J.An information-maximization approach to blind separat ion and blind deconvolution [J].Neural Computation,1995,7:1129-1159. 被引量:1
  • 7Fabian J,Bauer C H.Comparison of maximum entropy and minimal mutual information in a nonlinear setting [J].Signal Processing,2002,(82):971-980. 被引量:1
  • 8Robert A,Herbert B,Shoko A,Shoji M.On-line Time-domain Blind Source Separation of Nonstationary Convolved Signals[C]// Proceeding of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003).Japan,2003,4:987-992. 被引量:1
  • 9Thomas P.Hoff,Allen G.Lindgrenb.Adaptive step-size control in blind source separation [J].Neurocomputing,49 (2002):119-138. 被引量:1
  • 10吴小培,冯焕清,周荷琴,王涛.基于独立分量分析的混合声音信号分离[J].中国科学技术大学学报,2001,31(1):68-73. 被引量:23

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部