提出了一种基于先进过程控制(Advanced Process Control,APC)技术的综合控制方案在生物型人工肝支持系统(BAL)中的应用;对系统中被控物理量之间的相互作用规律进行了定性分析,按照物料平衡算式使之关联匹配,经过PI调节后,根据使用经验...提出了一种基于先进过程控制(Advanced Process Control,APC)技术的综合控制方案在生物型人工肝支持系统(BAL)中的应用;对系统中被控物理量之间的相互作用规律进行了定性分析,按照物料平衡算式使之关联匹配,经过PI调节后,根据使用经验进行离线结合在线的预测控制;实验结果表明:尽管生物反应器内存在着诸多非线性因素,且具有很强的耦合性及滞后特性,该方法仍取得了较好的控制效果,达到了BAL的使用要求。展开更多
本文采用两阶离散MIMO(Multi 1nput Multi Output)动态模型描述生化反应过程的动态行为,并以青霉素重复流加发酵为例,借助于计算机在线检测系统,在40,000L大罐上进行参数辨识与多变量自校正控制仿真研究。结果表明:该控制策略能够克服...本文采用两阶离散MIMO(Multi 1nput Multi Output)动态模型描述生化反应过程的动态行为,并以青霉素重复流加发酵为例,借助于计算机在线检测系统,在40,000L大罐上进行参数辨识与多变量自校正控制仿真研究。结果表明:该控制策略能够克服噪声和过程不确定性影响,使发酵沿最优轨迹进行,实现跟踪优化控制。展开更多
Industrial-scale bioprocessing underpins much of the production of pharmaceuticals,nutraceuticals,food,and beverage processing industries of the modern world.The proftability of these processes increasingly leverages ...Industrial-scale bioprocessing underpins much of the production of pharmaceuticals,nutraceuticals,food,and beverage processing industries of the modern world.The proftability of these processes increasingly leverages the economies of scale and scope that are critically dependent on the product yields,titers,and productivity.Most of the processes are controlled using classical control approaches and represent over 90%of the industrial controls used in bioprocessing industries.However,with the advances in the production processes,especially in the biopharmaceutical and nutraceutical industries,monitoring and control of bioprocesses such as fermentations with GMO organisms,and downstream processing has become increasingly complex and the inadequacies of the classical and some of the modern control systems techniques is becoming apparent.Therefore,with increasing research complexity,nonlinearity,and digitization in process,there has been a critical need for advanced process control that is more efective,and easier process intensifcation and product yield(both by quality and quantity)can be achieved.In this review,industrial aspects of a process and automation along with various commercial control strategies have been extensively discussed to give an insight into the future prospects of industrial development and possible new strategies for process control and automation with a special focus on the biopharmaceutical industry.展开更多
文摘提出了一种基于先进过程控制(Advanced Process Control,APC)技术的综合控制方案在生物型人工肝支持系统(BAL)中的应用;对系统中被控物理量之间的相互作用规律进行了定性分析,按照物料平衡算式使之关联匹配,经过PI调节后,根据使用经验进行离线结合在线的预测控制;实验结果表明:尽管生物反应器内存在着诸多非线性因素,且具有很强的耦合性及滞后特性,该方法仍取得了较好的控制效果,达到了BAL的使用要求。
文摘本文采用两阶离散MIMO(Multi 1nput Multi Output)动态模型描述生化反应过程的动态行为,并以青霉素重复流加发酵为例,借助于计算机在线检测系统,在40,000L大罐上进行参数辨识与多变量自校正控制仿真研究。结果表明:该控制策略能够克服噪声和过程不确定性影响,使发酵沿最优轨迹进行,实现跟踪优化控制。
文摘Industrial-scale bioprocessing underpins much of the production of pharmaceuticals,nutraceuticals,food,and beverage processing industries of the modern world.The proftability of these processes increasingly leverages the economies of scale and scope that are critically dependent on the product yields,titers,and productivity.Most of the processes are controlled using classical control approaches and represent over 90%of the industrial controls used in bioprocessing industries.However,with the advances in the production processes,especially in the biopharmaceutical and nutraceutical industries,monitoring and control of bioprocesses such as fermentations with GMO organisms,and downstream processing has become increasingly complex and the inadequacies of the classical and some of the modern control systems techniques is becoming apparent.Therefore,with increasing research complexity,nonlinearity,and digitization in process,there has been a critical need for advanced process control that is more efective,and easier process intensifcation and product yield(both by quality and quantity)can be achieved.In this review,industrial aspects of a process and automation along with various commercial control strategies have been extensively discussed to give an insight into the future prospects of industrial development and possible new strategies for process control and automation with a special focus on the biopharmaceutical industry.