We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions,...We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.展开更多
As an elegant generalization of wavelet transform, wavelet packet (WP) provides an effective representation tool for adaptive waveform analysis. Recent work shows that image-coding methods based on WP decomposition ...As an elegant generalization of wavelet transform, wavelet packet (WP) provides an effective representation tool for adaptive waveform analysis. Recent work shows that image-coding methods based on WP decomposition can achieve significant gain over those based on a usual wavelet transform. However, most of the work adopts a tree-structured quantization scheme, which is a successful technique for wavelet image coding, but not appropriate for WP subbands. This paper presents an image-coding algorithm based on a rate-distortion optimized wavelet packet decomposition and on an intraband block-partitioning scheme. By encoding each WP subband separately with the block-partitioning algorithm and the JPEG2000 context modeling, the proposed algorithm naturally avoids the difficulty in defining parent-offspring relationships for the WP coefficients, which has to be faced when adopting the tree-structured quanUzation scheme. The experimental results show that the proposed algorithm significantly outperforms SPIHT and JPEG2000 schemes and also surpasses state-of-the-art WP image coding algorithms, in terms of both PSNR and visual quality.展开更多
The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning...The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11471029,11101014 and 11301279)the Beijing Natural Science Foundation(Grant No.1142002+3 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.12KJB110016)CERG Grant from the Hong Kong Research Grants Council(Grant No.HKBU 202012)FRG Grant from Hong Kong Baptist University(Grant No.FRG2/12-13/077)
文摘We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.
基金the Major State Basic Research Development Program(973 Program)(Grant No.2004CB318005)
文摘As an elegant generalization of wavelet transform, wavelet packet (WP) provides an effective representation tool for adaptive waveform analysis. Recent work shows that image-coding methods based on WP decomposition can achieve significant gain over those based on a usual wavelet transform. However, most of the work adopts a tree-structured quantization scheme, which is a successful technique for wavelet image coding, but not appropriate for WP subbands. This paper presents an image-coding algorithm based on a rate-distortion optimized wavelet packet decomposition and on an intraband block-partitioning scheme. By encoding each WP subband separately with the block-partitioning algorithm and the JPEG2000 context modeling, the proposed algorithm naturally avoids the difficulty in defining parent-offspring relationships for the WP coefficients, which has to be faced when adopting the tree-structured quanUzation scheme. The experimental results show that the proposed algorithm significantly outperforms SPIHT and JPEG2000 schemes and also surpasses state-of-the-art WP image coding algorithms, in terms of both PSNR and visual quality.
基金The National Natural Science Foundation of China(No.60472053),the Natural Science Foundation of Jiangsu Province(No.BK2003055),the Specialized Research Fund for the Doctoral Pro-gram of Higher Education (No.20030286017).
文摘The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.