在统计意义上设计反应谱通常表示多条地震波反应结果的平均,利用等延性强度折减系数谱对弹性设计位移谱进行折减间接建立的弹塑性设计位移谱,在这方面与弹性设计位移谱并不能很好对应.为此基于3类场地各20条地震波的统计分析,研究了利...在统计意义上设计反应谱通常表示多条地震波反应结果的平均,利用等延性强度折减系数谱对弹性设计位移谱进行折减间接建立的弹塑性设计位移谱,在这方面与弹性设计位移谱并不能很好对应.为此基于3类场地各20条地震波的统计分析,研究了利用等延性强度折减系数谱间接建立的弹塑性位移谱与统计平均的弹塑性位移谱的偏差.结果发现前者会导致偏于危险的结果,特别是对软弱场地和位移延性系数大于4时.通过对国内外学者建议的6组等延性强度折减系数谱的比较分析,以精度较高的V id ic等建议的强度折减系数谱为准,并在间接方法中引入与位移延性系数、场地条件及结构周期相关的修正系数,建议了与弹性设计位移谱统计意义一致的弹塑性设计位移谱.展开更多
The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tension...The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability.展开更多
Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional id...Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
文摘在统计意义上设计反应谱通常表示多条地震波反应结果的平均,利用等延性强度折减系数谱对弹性设计位移谱进行折减间接建立的弹塑性设计位移谱,在这方面与弹性设计位移谱并不能很好对应.为此基于3类场地各20条地震波的统计分析,研究了利用等延性强度折减系数谱间接建立的弹塑性位移谱与统计平均的弹塑性位移谱的偏差.结果发现前者会导致偏于危险的结果,特别是对软弱场地和位移延性系数大于4时.通过对国内外学者建议的6组等延性强度折减系数谱的比较分析,以精度较高的V id ic等建议的强度折减系数谱为准,并在间接方法中引入与位移延性系数、场地条件及结构周期相关的修正系数,建议了与弹性设计位移谱统计意义一致的弹塑性设计位移谱.
文摘The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability.
文摘Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.