介质阻挡放电(DBD)实验中观察到了旋转同心圆环斑图。为研究斑图中点的运动状态与DBD参数之间的关系,采用高速录像机短曝光拍照、发射光谱分析及理论模拟等方法研究了DBD放电的旋转同心圆环斑图。斑图由中心点、内圈圆环点和外圈圆环点...介质阻挡放电(DBD)实验中观察到了旋转同心圆环斑图。为研究斑图中点的运动状态与DBD参数之间的关系,采用高速录像机短曝光拍照、发射光谱分析及理论模拟等方法研究了DBD放电的旋转同心圆环斑图。斑图由中心点、内圈圆环点和外圈圆环点组成;内外圈圆环上的点均旋转,但具有不同的速度;随着压强的升高,各点旋转速度增大。高速录像机以1个周期为曝光时间拍摄的照片显示,发现每个点均由明亮的体放电和丝状的沿面放电组成。发射光谱分析显示:随着气体压强从30 k Pa增大到50 k Pa时,旋转同心圆环中心点、内圈圆环点和外圈圆环点处的分子振动温度、电子平均能量均降低,而电子密度均增高。通过对旋转同心圆环斑图中体放电电流积分,结合着光谱测量的电子密度,模拟了旋转同心圆环斑图中体放电产生的壁电荷的电势,结果表明沿面放电对放电丝的旋转速度有重要影响。展开更多
文摘介质阻挡放电(DBD)实验中观察到了旋转同心圆环斑图。为研究斑图中点的运动状态与DBD参数之间的关系,采用高速录像机短曝光拍照、发射光谱分析及理论模拟等方法研究了DBD放电的旋转同心圆环斑图。斑图由中心点、内圈圆环点和外圈圆环点组成;内外圈圆环上的点均旋转,但具有不同的速度;随着压强的升高,各点旋转速度增大。高速录像机以1个周期为曝光时间拍摄的照片显示,发现每个点均由明亮的体放电和丝状的沿面放电组成。发射光谱分析显示:随着气体压强从30 k Pa增大到50 k Pa时,旋转同心圆环中心点、内圈圆环点和外圈圆环点处的分子振动温度、电子平均能量均降低,而电子密度均增高。通过对旋转同心圆环斑图中体放电电流积分,结合着光谱测量的电子密度,模拟了旋转同心圆环斑图中体放电产生的壁电荷的电势,结果表明沿面放电对放电丝的旋转速度有重要影响。