针对传统恒虚警(Constant False-Alarm Rate,CFAR)检测器在非均匀噪声环境下检测性能较差的问题,本文提出了一种基于排序的自动剔除Switching-CFAR(Automatic Censoring Switching-CFAR Detector Based on Sorting,ACS-CFAR)检测器.选...针对传统恒虚警(Constant False-Alarm Rate,CFAR)检测器在非均匀噪声环境下检测性能较差的问题,本文提出了一种基于排序的自动剔除Switching-CFAR(Automatic Censoring Switching-CFAR Detector Based on Sorting,ACS-CFAR)检测器.选择参考窗中间单元为测试单元,其余单元按照幅值升序排列,根据两个分界点位置参数,选择合适的参考单元集进行背景噪声功率估计以及结合参考单元数和目标恒虚警率计算相关系数,得到最优检测门限.经过仿真对比,ACS-CFAR检测器在均匀噪声环境下检测率为98.73%,接近于单元平均恒虚警(CA-CFAR)检测器;在非均匀噪声环境下检测率为98.16%,优于可变索引恒虚警(VI-CFAR)和自动删除平均恒虚警(ACCA-CFAR)检测器,虚警率误差均控制在0.10%以内.结果表明,本文提出的ACS-CFAR检测器在均匀噪声环境以及杂波和多目标干扰环境下均具有较好的检测性能.展开更多
该文提出了一种基于有序数据可变索引(Ordered Data Variability Index,ODVI)的SAR图像目标恒虚警检测算法,该算法首先对待测像素的参考窗进行基于ODVI的自适应筛选处理(Automatic Censoring,AC),以去除窗内的强杂波和干扰像素,并以窗...该文提出了一种基于有序数据可变索引(Ordered Data Variability Index,ODVI)的SAR图像目标恒虚警检测算法,该算法首先对待测像素的参考窗进行基于ODVI的自适应筛选处理(Automatic Censoring,AC),以去除窗内的强杂波和干扰像素,并以窗内保留的均匀像素对背景的统计特性进行建模,估计其概率密度函数的参量,同时构建双参数恒虚警检测(CFAR)的检验统计量,计算检测的自适应阈值,实现检测的判决。论文给出了该算法的检测性能曲线,并利用实测的X波段SAR图像进行实验验证,与其它检测方法进行比较,结果显示该文算法具有较好的检测性能和较低的虚警概率。展开更多
文摘针对传统恒虚警(Constant False-Alarm Rate,CFAR)检测器在非均匀噪声环境下检测性能较差的问题,本文提出了一种基于排序的自动剔除Switching-CFAR(Automatic Censoring Switching-CFAR Detector Based on Sorting,ACS-CFAR)检测器.选择参考窗中间单元为测试单元,其余单元按照幅值升序排列,根据两个分界点位置参数,选择合适的参考单元集进行背景噪声功率估计以及结合参考单元数和目标恒虚警率计算相关系数,得到最优检测门限.经过仿真对比,ACS-CFAR检测器在均匀噪声环境下检测率为98.73%,接近于单元平均恒虚警(CA-CFAR)检测器;在非均匀噪声环境下检测率为98.16%,优于可变索引恒虚警(VI-CFAR)和自动删除平均恒虚警(ACCA-CFAR)检测器,虚警率误差均控制在0.10%以内.结果表明,本文提出的ACS-CFAR检测器在均匀噪声环境以及杂波和多目标干扰环境下均具有较好的检测性能.
文摘该文提出了一种基于有序数据可变索引(Ordered Data Variability Index,ODVI)的SAR图像目标恒虚警检测算法,该算法首先对待测像素的参考窗进行基于ODVI的自适应筛选处理(Automatic Censoring,AC),以去除窗内的强杂波和干扰像素,并以窗内保留的均匀像素对背景的统计特性进行建模,估计其概率密度函数的参量,同时构建双参数恒虚警检测(CFAR)的检验统计量,计算检测的自适应阈值,实现检测的判决。论文给出了该算法的检测性能曲线,并利用实测的X波段SAR图像进行实验验证,与其它检测方法进行比较,结果显示该文算法具有较好的检测性能和较低的虚警概率。