18 Mn18 Cr0.5 N steel with an initial grain size of 28–177 μm was processed by 2.5%–20% cold rolling and annealing at 1000°C for 24 h,and the grain boundary character distribution was examined via electron bac...18 Mn18 Cr0.5 N steel with an initial grain size of 28–177 μm was processed by 2.5%–20% cold rolling and annealing at 1000°C for 24 h,and the grain boundary character distribution was examined via electron backscatter diffraction.Low strain(2.5%) favored the formation of low-Σ boundaries.At this strain,the fraction of low-Σ boundaries was insensitive to the initial grain size.However,specimens with fine initial grains showed decreasing grain size after grain boundary engineering processing.The fraction of low-Σ boundaries and the(Σ9 + Σ27)/Σ3 value decreased with increasing strain; furthermore,the specimens with fine initial grain size were sensitive to the strain.Finally,the effects of the initial grain size and strain on the grain boundary engineering were discussed in detail.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51505416)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province,China (No.E2017203041)+1 种基金the Natural Science Foundation of Hebei Province,China (No.E2016203436)the Post-Doctoral Research Project of Hebei Province,China (No.B2016003029)
文摘18 Mn18 Cr0.5 N steel with an initial grain size of 28–177 μm was processed by 2.5%–20% cold rolling and annealing at 1000°C for 24 h,and the grain boundary character distribution was examined via electron backscatter diffraction.Low strain(2.5%) favored the formation of low-Σ boundaries.At this strain,the fraction of low-Σ boundaries was insensitive to the initial grain size.However,specimens with fine initial grains showed decreasing grain size after grain boundary engineering processing.The fraction of low-Σ boundaries and the(Σ9 + Σ27)/Σ3 value decreased with increasing strain; furthermore,the specimens with fine initial grain size were sensitive to the strain.Finally,the effects of the initial grain size and strain on the grain boundary engineering were discussed in detail.