Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin...Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.展开更多
Two new types of electrically-assisted forming(EAF) processes of AZ31B magnesium alloy sheets,i.e., electrically-assisted blanking(EAB) and electrically-assisted sheet upset-extruding(EASUE), are proposed in this pape...Two new types of electrically-assisted forming(EAF) processes of AZ31B magnesium alloy sheets,i.e., electrically-assisted blanking(EAB) and electrically-assisted sheet upset-extruding(EASUE), are proposed in this paper. During EAB, pulsed current(PC) decreases blanking load and improves blanked surface quality,and higher frequency has a more effective improvement;when the frequency reaches 600 Hz, the whole punched hole fracture is improved to smooth zone. Moreover, EAB does not influence the microstructure and does not induce obvious annealing, and this process is advantageous to the materials that cannot change microstructure.During EASUE, PC can reduce extrusion load and enhance extrusion height, and higher frequency also has a more effective improvement. Both processes indicate that introducing PC can effectively improve the part quality and have an application prospection.展开更多
(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material was sintered via a field activated and pressure assisted sintering(FAPAS) process.By applying different current intensity(0,60,320 A/cm^2) in the si...(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material was sintered via a field activated and pressure assisted sintering(FAPAS) process.By applying different current intensity(0,60,320 A/cm^2) in the sintering process,the effects of electric current on the microstructure and thermoelectric performance were investigated.This demonstrated that the application of electric current in the sintering process could significantly improve the uniformity and density of(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) samples.When the current intensity was raised to 320 A/cm^2,the preferred orientation of grains was observed.Moreover,positive effects on the thermoelectric performance of applying electric current in the sintering process were also confirmed.An increase of 0.02 and 0.11 in the maximum figure of merit ZT value could be acquired by applying current of 60 and 320 A/cm^2,respectively.展开更多
The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to over...The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to overcome the disadvantages of two traditional air filtration system,electrostatic assisted air filtration system(combining HEPA and ESP)has been proven to achieve high filtration efficiency and low energy consumption simultaneously.Predicting of V-I characteristics of electrostatic filtration system with configuration of“pin to filter medium to grounded device”is very essential and challenging due to the back corona phenomenon.This study utilized the back-corona based current model to predict the V-I characteristics of electrostatic system with different filter medium types and“pin-to-filter”distances.Experiments are conducted to provide data for model validation by changing filter types and locations of discharge pin.The results indicated that both of the predicted values of total discharge current and back-corona induced current agreed well with the experimentally measured data.This validated mathematical model could be used for preliminary design of electrostatic assisted filtration system with configuration of“pin to filter to grounded device”.Based on the V-I characteristics predicted by the semi-empirical model,the electrostatic filtration efficiency could be estimated.展开更多
基金support from the National Natural Science Foundation of China(62275057)the Guangxi Natural Science Foundation(2023GXNSFFA026004 and 2022GXNSFDA035066)+3 种基金the Innovation Project of Guangxi Graduate Education(YCBZ2024034)Natural Science Foundation of Ningbo under grant(2022J149)Natural Science Foundation of Ningbo under grant(2022A-230-G)Portions of this research were carried out at the 3C SAXS-I and 9A U-SAXS beam lines of the Pohang Accelerator Laboratory(PLS-II),Republic of Korea.
文摘Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.
基金the National Natural Science Foundation of China(No.51635005)
文摘Two new types of electrically-assisted forming(EAF) processes of AZ31B magnesium alloy sheets,i.e., electrically-assisted blanking(EAB) and electrically-assisted sheet upset-extruding(EASUE), are proposed in this paper. During EAB, pulsed current(PC) decreases blanking load and improves blanked surface quality,and higher frequency has a more effective improvement;when the frequency reaches 600 Hz, the whole punched hole fracture is improved to smooth zone. Moreover, EAB does not influence the microstructure and does not induce obvious annealing, and this process is advantageous to the materials that cannot change microstructure.During EASUE, PC can reduce extrusion load and enhance extrusion height, and higher frequency also has a more effective improvement. Both processes indicate that introducing PC can effectively improve the part quality and have an application prospection.
基金Project support by the National Research Program of China(No.50975190)
文摘(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material was sintered via a field activated and pressure assisted sintering(FAPAS) process.By applying different current intensity(0,60,320 A/cm^2) in the sintering process,the effects of electric current on the microstructure and thermoelectric performance were investigated.This demonstrated that the application of electric current in the sintering process could significantly improve the uniformity and density of(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) samples.When the current intensity was raised to 320 A/cm^2,the preferred orientation of grains was observed.Moreover,positive effects on the thermoelectric performance of applying electric current in the sintering process were also confirmed.An increase of 0.02 and 0.11 in the maximum figure of merit ZT value could be acquired by applying current of 60 and 320 A/cm^2,respectively.
基金The authors would like to acknowledge the coordinated support from Natural Science Foundation of China(Grant No.51808138,51778385,51878442).
文摘The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to overcome the disadvantages of two traditional air filtration system,electrostatic assisted air filtration system(combining HEPA and ESP)has been proven to achieve high filtration efficiency and low energy consumption simultaneously.Predicting of V-I characteristics of electrostatic filtration system with configuration of“pin to filter medium to grounded device”is very essential and challenging due to the back corona phenomenon.This study utilized the back-corona based current model to predict the V-I characteristics of electrostatic system with different filter medium types and“pin-to-filter”distances.Experiments are conducted to provide data for model validation by changing filter types and locations of discharge pin.The results indicated that both of the predicted values of total discharge current and back-corona induced current agreed well with the experimentally measured data.This validated mathematical model could be used for preliminary design of electrostatic assisted filtration system with configuration of“pin to filter to grounded device”.Based on the V-I characteristics predicted by the semi-empirical model,the electrostatic filtration efficiency could be estimated.