This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
Uncertainty in determining optimum conjunctive water use lies not only on variability of hydrological cycle and climate but also on lack of adequate data and perfect knowledge about groundwater-surface water system in...Uncertainty in determining optimum conjunctive water use lies not only on variability of hydrological cycle and climate but also on lack of adequate data and perfect knowledge about groundwater-surface water system interactions, errors in historic data and inherent variability of system parameters both in space and time. Simulation-optimization models are used for conjunctive water use management under uncertain conditions. However, direct application of such approach whereby all realizations are considered at every-iteration of the optimization process leads to a highly computational time-consuming optimization problem as the number of realizations increases. Hence, this study proposes a novel approach—a Retrospective Optimization Approximation (ROA) approach. In this approach, a simulation model was used to determine aquifer system responses (draw-downs) which were assembled as response matrices and incorporated in the optimization model (procedure) as coefficients in the constraints. The sample optimization sub-problems generated, were solved and analyzed through ROA-Active-Set procedure implemented under MATLAB code. The ROA-Active Set procedure solves and evaluates a sequence of sample path optimization sub-problems in an increasing number of realizations. The methodology was applied to a real-world conjunctive water use management problem found in Great Letaba River basin, South Africa. In the River basin, surface water source contributes 87% of the existing un-optimized total conjunctive water use withdrawal rate (6512.04 m<sup>3</sup>/day) and the remaining 13% is contributed by groundwater source. Through ROA approach, results indicate that the optimum percentages contribution of the surface and subsurface sources to the total water demand are 58% and 42% respectively. This implies that the existing percentage contribution can be increased or reduced by ±29% that is groundwater source can be increased by 29% while the surface water source contribution can be reduced by 29%. This reveals that the exist展开更多
The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast ...The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.展开更多
对于O+NH反应,在~3A″和~1A″势能面(Guadagnini R,Schatz G C,Walch S P.Global potential energysurface for the lowest^1 A′,~3A″,and^1A″states of HNO[J].J.Chem.Phys.,1995,10:774)上,我们运用coupled state or centrifugal s...对于O+NH反应,在~3A″和~1A″势能面(Guadagnini R,Schatz G C,Walch S P.Global potential energysurface for the lowest^1 A′,~3A″,and^1A″states of HNO[J].J.Chem.Phys.,1995,10:774)上,我们运用coupled state or centrifugal sudden(CS)近似和close coupling or Coriolis coupled(CC)方法进行了量子动力学计算.通过比较两种方法得到的总的反应几率,我们发现对于两个势能面上的标题反应,CS近似是失效的.我们还讨论了用CS和CC方法得到的速率常数,并进行了结果比较.展开更多
Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dis...Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dispatch methods are not suitable for practical application.In this paper,a general math formulation of the hierarchical dispatch method is proposed to coordinate EPS and DHS operators based on the feasible region of boundary variables(FRBV),and a method based on the simplicial approximation approach is proposed to obtain a conservative FRBV approximation of a DHS.A simulation based on a real 41-node DHS is constructed to determine the factors that may impact the boundaries of the FRBV,and then the performance of the simplicial approximation approach is displayed by visualizing the approximation process for the FRBV,and finally three dispatch methods are compared to show the advantages of the proposed hierarchical dispatch method.展开更多
This review covers previous and current literature on the impact of forensic anthropologists on the positive scientific identification of human remains and aims to provide an under-standing of what information a foren...This review covers previous and current literature on the impact of forensic anthropologists on the positive scientific identification of human remains and aims to provide an under-standing of what information a forensic anthropologist can contribute to an investigation. Forensic anthropologists looking to identify human remains study traits of the skeleton and any orthopedic devices present. In order to obtain a positive scientific identification, evi-dence that is both sufficiently unique to the individual and comparable to available ante-mortem data from that individual must be found. The increased availability of radiographs, scans and implants in recent decades has facilitated the identification process. When these records are unavailable, other techniques, such as craniofacial superimposition and facial approximation, can be employed. While these methods may assist the identification process, they are most useful for exclusion of certain individuals and gathering leads from the public. Forensic anthropologists have heavily relied on the skull and its complexities for identifica-tion – typically focusing on the frontal sinus and other unique traits. Post-cranial remains can provide important information about bone density, possible disease and other character-istics that may also be utilized. Techniques used to positively identify individuals are not limited to medicolegal death investigations, and have been useful in other legal contexts. In the future, a team approach, utilizing all the information gathered by multiple forensic scientists–including forensic anthropologists–will most likely become more common.展开更多
A nonlinear synthesis problem of antennas according to the prescribed power (squared amplitude) radiation pattern (RP) is considered in the variational statement that yields in the possibility to take into account an ...A nonlinear synthesis problem of antennas according to the prescribed power (squared amplitude) radiation pattern (RP) is considered in the variational statement that yields in the possibility to take into account an additional restriction to the synthesized power RP. The problem of synthesis consists of finding such currents in antenna, which generates the RP with the best approximation to the given one. The respective Euler’s equation is reduced on the basis of used functional. This is nonlinear integral equation of Hammerstein’s type. The effective numerical methods are elaborated and applied for its solving. The computational results verify the effectiveness of approach proposed.展开更多
We investigate theηKˉK^?three-body system in order to look for possible IG(JPC)=0+(1?+)exotic states in the framework of the fixed-center approximation of the Faddeev equation.We assume the scattering ofηon a clust...We investigate theηKˉK^?three-body system in order to look for possible IG(JPC)=0+(1?+)exotic states in the framework of the fixed-center approximation of the Faddeev equation.We assume the scattering ofηon a clusterized system KˉK^?,which is known to generate f1(1285),or a Kˉin a clusterized systemηK^?,which is shown to generate K1(1270).In the case ofη-(KˉK^?)f1(1285)scattering,we find evidence of a bound state IG(JPC)=0+(1?+)below theηf1(1285)threshold with a mass of around 1700 MeV and a width of about 180 MeV.Considering Kˉ-(ηK^?)K1(1270)scattering,we obtain a bound state I(JP)=0(1?)just below the KˉK1(1270)threshold with a mass of around 1680 MeV and a width of about 160 MeV.展开更多
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘Uncertainty in determining optimum conjunctive water use lies not only on variability of hydrological cycle and climate but also on lack of adequate data and perfect knowledge about groundwater-surface water system interactions, errors in historic data and inherent variability of system parameters both in space and time. Simulation-optimization models are used for conjunctive water use management under uncertain conditions. However, direct application of such approach whereby all realizations are considered at every-iteration of the optimization process leads to a highly computational time-consuming optimization problem as the number of realizations increases. Hence, this study proposes a novel approach—a Retrospective Optimization Approximation (ROA) approach. In this approach, a simulation model was used to determine aquifer system responses (draw-downs) which were assembled as response matrices and incorporated in the optimization model (procedure) as coefficients in the constraints. The sample optimization sub-problems generated, were solved and analyzed through ROA-Active-Set procedure implemented under MATLAB code. The ROA-Active Set procedure solves and evaluates a sequence of sample path optimization sub-problems in an increasing number of realizations. The methodology was applied to a real-world conjunctive water use management problem found in Great Letaba River basin, South Africa. In the River basin, surface water source contributes 87% of the existing un-optimized total conjunctive water use withdrawal rate (6512.04 m<sup>3</sup>/day) and the remaining 13% is contributed by groundwater source. Through ROA approach, results indicate that the optimum percentages contribution of the surface and subsurface sources to the total water demand are 58% and 42% respectively. This implies that the existing percentage contribution can be increased or reduced by ±29% that is groundwater source can be increased by 29% while the surface water source contribution can be reduced by 29%. This reveals that the exist
基金the National Natural Science Foundation of China(No.60574023,40776051)the Natural Science Foundation of Zhejiang Province(No.Y107232)+1 种基金the Scientific Research Found of Zhejiang Provincial Education Department(No.Y200702660)the 123 Talent Funding Project of China Jiliang University(No.2006RC17)
文摘The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.
文摘对于O+NH反应,在~3A″和~1A″势能面(Guadagnini R,Schatz G C,Walch S P.Global potential energysurface for the lowest^1 A′,~3A″,and^1A″states of HNO[J].J.Chem.Phys.,1995,10:774)上,我们运用coupled state or centrifugal sudden(CS)近似和close coupling or Coriolis coupled(CC)方法进行了量子动力学计算.通过比较两种方法得到的总的反应几率,我们发现对于两个势能面上的标题反应,CS近似是失效的.我们还讨论了用CS和CC方法得到的速率常数,并进行了结果比较.
基金This work was supported by the National Key Research and Development Program of China under Grant 2017YFB0902100 and State Grid Corporation of China.
文摘Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dispatch methods are not suitable for practical application.In this paper,a general math formulation of the hierarchical dispatch method is proposed to coordinate EPS and DHS operators based on the feasible region of boundary variables(FRBV),and a method based on the simplicial approximation approach is proposed to obtain a conservative FRBV approximation of a DHS.A simulation based on a real 41-node DHS is constructed to determine the factors that may impact the boundaries of the FRBV,and then the performance of the simplicial approximation approach is displayed by visualizing the approximation process for the FRBV,and finally three dispatch methods are compared to show the advantages of the proposed hierarchical dispatch method.
文摘This review covers previous and current literature on the impact of forensic anthropologists on the positive scientific identification of human remains and aims to provide an under-standing of what information a forensic anthropologist can contribute to an investigation. Forensic anthropologists looking to identify human remains study traits of the skeleton and any orthopedic devices present. In order to obtain a positive scientific identification, evi-dence that is both sufficiently unique to the individual and comparable to available ante-mortem data from that individual must be found. The increased availability of radiographs, scans and implants in recent decades has facilitated the identification process. When these records are unavailable, other techniques, such as craniofacial superimposition and facial approximation, can be employed. While these methods may assist the identification process, they are most useful for exclusion of certain individuals and gathering leads from the public. Forensic anthropologists have heavily relied on the skull and its complexities for identifica-tion – typically focusing on the frontal sinus and other unique traits. Post-cranial remains can provide important information about bone density, possible disease and other character-istics that may also be utilized. Techniques used to positively identify individuals are not limited to medicolegal death investigations, and have been useful in other legal contexts. In the future, a team approach, utilizing all the information gathered by multiple forensic scientists–including forensic anthropologists–will most likely become more common.
文摘A nonlinear synthesis problem of antennas according to the prescribed power (squared amplitude) radiation pattern (RP) is considered in the variational statement that yields in the possibility to take into account an additional restriction to the synthesized power RP. The problem of synthesis consists of finding such currents in antenna, which generates the RP with the best approximation to the given one. The respective Euler’s equation is reduced on the basis of used functional. This is nonlinear integral equation of Hammerstein’s type. The effective numerical methods are elaborated and applied for its solving. The computational results verify the effectiveness of approach proposed.
基金Partly supported by the National Natural Science Foundation of China(11735003,1191101015,11475227)the Youth Innovation Promotion Association CAS(2016367)。
文摘We investigate theηKˉK^?three-body system in order to look for possible IG(JPC)=0+(1?+)exotic states in the framework of the fixed-center approximation of the Faddeev equation.We assume the scattering ofηon a clusterized system KˉK^?,which is known to generate f1(1285),or a Kˉin a clusterized systemηK^?,which is shown to generate K1(1270).In the case ofη-(KˉK^?)f1(1285)scattering,we find evidence of a bound state IG(JPC)=0+(1?+)below theηf1(1285)threshold with a mass of around 1700 MeV and a width of about 180 MeV.Considering Kˉ-(ηK^?)K1(1270)scattering,we obtain a bound state I(JP)=0(1?)just below the KˉK1(1270)threshold with a mass of around 1680 MeV and a width of about 160 MeV.