摘要
为了准确有效地处理农业生产中的不确定性因素,基于可信性理论和两阶段模糊优化方法提出一类新的带有最小风险准则的两阶段模糊农业生产计划模型.然后,讨论可信性函数的逼近方法并且设计一个基于逼近方法、神经网络和模拟退火的启发式算法来求解这个两阶段模糊农业生产计划最小风险模型.最后,给出一个数值例子来表明所设计算法的可行性和有效性.
In order to precisely and effectively handle uncertainty factors in agriculture pro- duction, this paper will present a new type of two-stage fuzzy agriculture production planning model with minimum risk criteria based on credibility theory and two-stage fuzzy optimization method. Then it will deal with the approximation approach of credibility function and design a heuristic algorithm, which Combines approximation approach, neural network and simulated annealing to solve this two-stage fuzzy agriculture production planning minimum-risk model. Finally, a numerical example is given to show the feasibility and effectiveness of the designed algorithm.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第18期11-20,共10页
Mathematics in Practice and Theory
基金
河北金融学院科研基金(JY200928)
关键词
农业生产计划
可信性理论
两阶段模糊优化
逼近方法
模拟退火
agriculture production planning
credibility theory
two-stage fuzzy programming
approximation approach
simulated annealing