The present study is focused on a comparative evaluation of landslide disaster using analytical hierarchy process and information value method for hazard assessment in highly tectonic Chamba region in bosom of Himalay...The present study is focused on a comparative evaluation of landslide disaster using analytical hierarchy process and information value method for hazard assessment in highly tectonic Chamba region in bosom of Himalaya. During study, the information about the causative factors was generated and the landslide hazard zonation maps were delineated using Information Value Method(IV) and Analytical Hierarchy Process(AHP) using Arc GIS(ESRI). For this purpose, the study area was selected in a part of Ravi river catchment along one of the landslide prone Chamba to Bharmour road corridor of National Highway(NH^(-1)54 A) in Himachal Pradesh, India. A numeral landslide triggering geoenvironmental factors i.e. slope, aspect, relative relief, soil, curvature, land use and land cover(LULC), lithology, drainage density, and lineament density were selected for landslide hazard mapping based on landslide inventory. Landslide hazard zonation map was categorized namely "very high hazard, high hazard, medium hazard, low hazard, and very low hazard". The results from these two methods were validated using Area Under Curve(AUC) plots. It is found that hazard zonation map prepared using information value method and analytical hierarchy process methods possess the prediction rate of 78.87% and 75.42%, respectively. Hence, landslide hazardzonation map obtained using information value method is proposed to be more useful for the study area. These final hazard zonation maps can be used by various stakeholders like engineers and administrators for proper maintenance and smooth traffic flow between Chamba and Bharmour cities, which is the only route connecting these tourist places.展开更多
Food waste generation is a pressing issue that requires urgent attention and concerted efforts worldwide.The staggering amount of food wasted each year not only wastes valuable resources but also exacerbates environme...Food waste generation is a pressing issue that requires urgent attention and concerted efforts worldwide.The staggering amount of food wasted each year not only wastes valuable resources but also exacerbates environmental,economic,and social challenges.Food Waste Management(FWM)consists of a complex array of criteria and sub-criteria,and treatments which seems interdependent.There is a need to evaluate the FWM with the help of important criteria and sub-criteria and treatments to address this challenge.In this study,we identified four important criteria,21 sub-criteria,and four alternatives of FWM for the case of Malaysia using the integrated approach of literature review and expert opinions.Further,we employed the approach of Modified Fuzzy Improved Analytical Hierarchy Process(IAHP)to corroborate the interrelationships among the identified criteria and sub-criteria,and their associated treatments.This study undertakes linear normalization methods to transform data into comparable numerical values and the Geometric Mean method to handle uncertainty in human judgments.Moreover,the Centroid method is employed to convert fuzzy weights into crisp sets for ease of interpretation.The results indicate that environmental is the most essential criterion,followed by social,economic,and technical.In addition,air and water pollution is identified as the most critical sub-criteria.Black Soldier Fly is discovered as the most sustainable FWM treatment,since it performs the best while meeting all the criteria and sub-criteria assessed.Sensitivity analysis demonstrates that the outputs from the proposed method are robust and reliable.The finding suggests a proper and robust approach to help decision-makers select suitable FWM treatments to tackle various criteria and alternatives especially when handling inconsistent and uncertain judgments during evaluation.展开更多
The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining th...The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining the impact of the disruption posed a major challenge for the industry.This study contributes to the existing literature by identifying and analyzing the most significant drivers that affected the sustainability of the Oil and Gas supply chain during the Covid pandemic.Fifteen drivers were identified based on an extensive literature review and a survey conducted with experts working in the Oil and Gas industry.Multi-criteria decision-making methodologies were used to analyze these drivers.The analysis from the fuzzy analytical hierarchy process found that the most important drivers for the sustainability of the Oil and gas supply chain during the pandemic were"Risk management capacity","Government regulation"and"Health and safety of employees".On the other hand,the driver"Community Pressure"was found to be of the least importance.Furthermore,the study integrated the results of the fuzzy analytical hierarchy process with the fuzzy technique for order of preference by similarity to ideal solution to calculate the supply chain sustainability index.A case example was demonstrated to rank the industries based on such calculations.This study can support the governmental institutions in benchmarking the Oil and Gas industry based on its sustainability index.Additionally,the outcomes of the study will help industrial decision makers prioritize the drivers the company should focus and devise strategies based on the priority to improve the sustainability of their supply chain during severe disruption.This will be crucial as the World health organization has cautioned that the world may encounter another pandemic in the near future.展开更多
The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Sys...The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.展开更多
Tourism in mountainous regions is a significant source of revenue generation. However, it has also been associated with many adverse environmental consequences. This study aims at assessing the negative impacts of the...Tourism in mountainous regions is a significant source of revenue generation. However, it has also been associated with many adverse environmental consequences. This study aims at assessing the negative impacts of the incessant upsurge in tourism development on the physical environment of Mussoorie, a well-known mountain tourist destination in India. The impact indicators for the region were identified and assessed by qualitative and quantitative analysis of field observations. The observations indicated the aggravation of traffic congestion, atmospheric pollution, undisposed solid waste, water scarcity and infrastructure unavailability as the prevalent issues, especially during the peak tourist months. The extent of the consequential damage to the environment was evaluated by conducting an assessment of tourism-induced human disturbance on the natural landscape of the town. Slope, slope aspect, vegetation cover, road network and drainage network were incorporated as thedetermining landscape attributes to prepare thematic maps of landscape quality(perceivable intrinsic properties) and landscape fragility(vulnerability to anthropogenic disturbances) using GIS technique. An absorption capacity map was finally prepared to characterize the study area into regions of different conservation needs. The results identified the need for planning appropriate preservation strategies for different tourist places in the town. The study can be used by the policy makers for implementing the regulatory measures against potential disturbances due to mass-tourism.展开更多
Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this...Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.展开更多
In a social network analysis the output provided includes many measures and metrics. For each of these measures and metric, the output provides the ability to obtain a rank ordering of the nodes in terms of these meas...In a social network analysis the output provided includes many measures and metrics. For each of these measures and metric, the output provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning disrupting or deceiving a given network. All is fine when all the measures indicate the same node as the key or influential node. What happens when the measures indicate different key nodes? Our goal in this paper is to explore two methodologies to identify the key players or nodes in a given network. We apply TOPSIS to analyze these outputs to find the most influential nodes as a function of the decision makers' inputs as a process to consider both subjective and objectives inputs through pairwise comparison matrices. We illustrate our results using two common networks from the literature: the Kite network and the Information flow network from Knoke and Wood. We discuss some basic sensitivity analysis can may be applied to the methods. We find the use of TOPSIS as a flexible method to weight the criterion based upon the decision makers' inputs or the topology of the network.展开更多
Background:Earthquake is one of the most destructive catastrophes in Bangladesh and the evaluation of vulnerability is a prerequisite for the earthquake risk estimation.As a result,determining vulnerability is essenti...Background:Earthquake is one of the most destructive catastrophes in Bangladesh and the evaluation of vulnerability is a prerequisite for the earthquake risk estimation.As a result,determining vulnerability is essential for lowering the future fatalities.The fundamental challenge in estimating the seismic vulnerability is to have a systematic understanding of all potential earthquake related losses.With this objective,the current study deals with evaluating the seismic vulnerability of Sylhet district of Bangladesh.Method:A multi-criteria decision-making approach such as the analytical hierarchy process(AHP)has been used in this study to estimate the earthquake vulnerability.For the assessment of three scenarios namely social,structural,and physical distance vulnerabilities,several criteria have been chosen in order to fully identify the risk of earthquake.Findings:The study uncovers the vulnerable areas of Sylhet district.It is revealed that in terms of social vulnerability,9%area of Sylhet district is under very high,55%high,15%moderate,17%low,and 4%is under very low vulnerable zone.Structural vulnerability represents that 9%of the district area is under the very high vulnerability category,48%high,31%moderate,4%low,and 8%falls under the very low category zone,whereas physical distance vulnerability comes up with a result that 23%,38%,23%,7%,and 9%of the total area fall into very high,high,moderate,low,and very low categories,respectively.Interpretation:The current work on seismic vulnerability assessment might be useful in reducing the risk and minimizing the losses due to earthquake.展开更多
This study used remote sensing and GIS to analyze the landscape pattern changes in the Yancheng Nature Reserve from 1983 to 2018,established an evaluation index system based on the regional natural-socio-economic comp...This study used remote sensing and GIS to analyze the landscape pattern changes in the Yancheng Nature Reserve from 1983 to 2018,established an evaluation index system based on the regional natural-socio-economic complex ecosystem security pattern,and then analyzed the spatial characteristics of ecological security changes and discusses reasons for these changes.The results show that the landscape pattern changed dramatically from natural landscape to a mixture of natural landscape and artificial landscape from 1983 to 2018 due to the intensification of human activities.At present,the ecological security status of the protected areas is not optimistic.From the perspective of the survival status of red-crowned cranes,the protected areas are suitable.However,due to the increase of human activities and policy adjustments,the habitat of red-crowned cranes is fragmented.The red-crowned crane currently gathers in localized areas such as the core area and the buffer zone.We should pay more attention to management,policy development and the environmental awareness of local residents.At the same time,it is necessary to reduce the intensity of human activities within the reserve.展开更多
Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build ori...Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build orientation is crucial in AM because it affects the as-built part,including its part accuracy,surface roughness,support structure,and build time and cost.A mechanical part is usually composed of multiple surface features.The surface features carry the production and design knowledge,which can be utilized in SLM fabrication.This study proposes a method to determine the build orientation of multi-feature mechanical parts(MFMPs)in SLM.First,the surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives.Second,the estimation models of involved optimization objectives are established,and a set of alternative build orientations(ABOs)is further obtained by many-objective optimization.Lastly,a multi-objective decision making method integrated by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to select an optimal build orientation from those ABOs.The weights of the feature groups and considered objectives are achieved by a fuzzy analytical hierarchy process.Two case studies are reported to validate the proposed method with numerical results,and the effectiveness comparison is presented.Physical manufacturing is conducted to prove the performance of the proposed method.The measured average sampling surface roughness of the most crucial feature of the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method are 15.82,10.84,and 10.62μm,respectively.The numerical and physical validation results demonstrate that the proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM.展开更多
Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only imm...Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only immense economic importance but also ecological significance.The purpose of the study was to map the landslide-prone areas along KKH using two different techniquesAnalytical Hierarchy Process(AHP)and Scoops 3 D model.The causative parameters for running AHP include the lithology,presence of thrust,land use land cover,precipitation,and Digital Elevation Model(DEM)derived variables(slope,curvature,aspect,and elevation).The AHP derived final landslide susceptibility map was classified into four zones,i.e.,low,moderate,high,and extremely high.Over 80%of the study area falls under the moderate(43%)and high(40%)landslide susceptible zones.To assess the slope stability of the study area,the Scoops 3 D model was used by integrating with the earthquake loading data.The results of the limit equilibrium analysis categorized the area into four groups(low,moderate,high,and extremely high mass)of slope failure.The areas around Main Mantle Thrust(MMT)including Dubair,Jijal,and Kohistan regions,had high volumes of potential slope failures.The results from AHP and Scoops 3 D techniques were validated with the landslides inventory record of the Geological Survey of Pakistan and Google Earth.The results from both the techniques showed similar output that coincides with the known landslides areas.However,Scoops 3 D provides not only susceptible zones but also the range of volume of the potential slope failures.Further,these techniques could be used in other mountainous areas,which could help in the landslide mitigation measures.展开更多
文摘The present study is focused on a comparative evaluation of landslide disaster using analytical hierarchy process and information value method for hazard assessment in highly tectonic Chamba region in bosom of Himalaya. During study, the information about the causative factors was generated and the landslide hazard zonation maps were delineated using Information Value Method(IV) and Analytical Hierarchy Process(AHP) using Arc GIS(ESRI). For this purpose, the study area was selected in a part of Ravi river catchment along one of the landslide prone Chamba to Bharmour road corridor of National Highway(NH^(-1)54 A) in Himachal Pradesh, India. A numeral landslide triggering geoenvironmental factors i.e. slope, aspect, relative relief, soil, curvature, land use and land cover(LULC), lithology, drainage density, and lineament density were selected for landslide hazard mapping based on landslide inventory. Landslide hazard zonation map was categorized namely "very high hazard, high hazard, medium hazard, low hazard, and very low hazard". The results from these two methods were validated using Area Under Curve(AUC) plots. It is found that hazard zonation map prepared using information value method and analytical hierarchy process methods possess the prediction rate of 78.87% and 75.42%, respectively. Hence, landslide hazardzonation map obtained using information value method is proposed to be more useful for the study area. These final hazard zonation maps can be used by various stakeholders like engineers and administrators for proper maintenance and smooth traffic flow between Chamba and Bharmour cities, which is the only route connecting these tourist places.
基金This research work was funded and supported under UUM,Development and Ecosystem Research Grant Scheme(Code:14246).
文摘Food waste generation is a pressing issue that requires urgent attention and concerted efforts worldwide.The staggering amount of food wasted each year not only wastes valuable resources but also exacerbates environmental,economic,and social challenges.Food Waste Management(FWM)consists of a complex array of criteria and sub-criteria,and treatments which seems interdependent.There is a need to evaluate the FWM with the help of important criteria and sub-criteria and treatments to address this challenge.In this study,we identified four important criteria,21 sub-criteria,and four alternatives of FWM for the case of Malaysia using the integrated approach of literature review and expert opinions.Further,we employed the approach of Modified Fuzzy Improved Analytical Hierarchy Process(IAHP)to corroborate the interrelationships among the identified criteria and sub-criteria,and their associated treatments.This study undertakes linear normalization methods to transform data into comparable numerical values and the Geometric Mean method to handle uncertainty in human judgments.Moreover,the Centroid method is employed to convert fuzzy weights into crisp sets for ease of interpretation.The results indicate that environmental is the most essential criterion,followed by social,economic,and technical.In addition,air and water pollution is identified as the most critical sub-criteria.Black Soldier Fly is discovered as the most sustainable FWM treatment,since it performs the best while meeting all the criteria and sub-criteria assessed.Sensitivity analysis demonstrates that the outputs from the proposed method are robust and reliable.The finding suggests a proper and robust approach to help decision-makers select suitable FWM treatments to tackle various criteria and alternatives especially when handling inconsistent and uncertain judgments during evaluation.
文摘The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining the impact of the disruption posed a major challenge for the industry.This study contributes to the existing literature by identifying and analyzing the most significant drivers that affected the sustainability of the Oil and Gas supply chain during the Covid pandemic.Fifteen drivers were identified based on an extensive literature review and a survey conducted with experts working in the Oil and Gas industry.Multi-criteria decision-making methodologies were used to analyze these drivers.The analysis from the fuzzy analytical hierarchy process found that the most important drivers for the sustainability of the Oil and gas supply chain during the pandemic were"Risk management capacity","Government regulation"and"Health and safety of employees".On the other hand,the driver"Community Pressure"was found to be of the least importance.Furthermore,the study integrated the results of the fuzzy analytical hierarchy process with the fuzzy technique for order of preference by similarity to ideal solution to calculate the supply chain sustainability index.A case example was demonstrated to rank the industries based on such calculations.This study can support the governmental institutions in benchmarking the Oil and Gas industry based on its sustainability index.Additionally,the outcomes of the study will help industrial decision makers prioritize the drivers the company should focus and devise strategies based on the priority to improve the sustainability of their supply chain during severe disruption.This will be crucial as the World health organization has cautioned that the world may encounter another pandemic in the near future.
文摘The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.
基金Financial support provided to the first author from the Department of Science&Technology,Government of India under grant DST/INSPIRE FELLOWSHIP/2012/558
文摘Tourism in mountainous regions is a significant source of revenue generation. However, it has also been associated with many adverse environmental consequences. This study aims at assessing the negative impacts of the incessant upsurge in tourism development on the physical environment of Mussoorie, a well-known mountain tourist destination in India. The impact indicators for the region were identified and assessed by qualitative and quantitative analysis of field observations. The observations indicated the aggravation of traffic congestion, atmospheric pollution, undisposed solid waste, water scarcity and infrastructure unavailability as the prevalent issues, especially during the peak tourist months. The extent of the consequential damage to the environment was evaluated by conducting an assessment of tourism-induced human disturbance on the natural landscape of the town. Slope, slope aspect, vegetation cover, road network and drainage network were incorporated as thedetermining landscape attributes to prepare thematic maps of landscape quality(perceivable intrinsic properties) and landscape fragility(vulnerability to anthropogenic disturbances) using GIS technique. An absorption capacity map was finally prepared to characterize the study area into regions of different conservation needs. The results identified the need for planning appropriate preservation strategies for different tourist places in the town. The study can be used by the policy makers for implementing the regulatory measures against potential disturbances due to mass-tourism.
基金Project (No.033113111) supported by Tianjin Science Association Key Project,China
文摘Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.
文摘In a social network analysis the output provided includes many measures and metrics. For each of these measures and metric, the output provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning disrupting or deceiving a given network. All is fine when all the measures indicate the same node as the key or influential node. What happens when the measures indicate different key nodes? Our goal in this paper is to explore two methodologies to identify the key players or nodes in a given network. We apply TOPSIS to analyze these outputs to find the most influential nodes as a function of the decision makers' inputs as a process to consider both subjective and objectives inputs through pairwise comparison matrices. We illustrate our results using two common networks from the literature: the Kite network and the Information flow network from Knoke and Wood. We discuss some basic sensitivity analysis can may be applied to the methods. We find the use of TOPSIS as a flexible method to weight the criterion based upon the decision makers' inputs or the topology of the network.
文摘Background:Earthquake is one of the most destructive catastrophes in Bangladesh and the evaluation of vulnerability is a prerequisite for the earthquake risk estimation.As a result,determining vulnerability is essential for lowering the future fatalities.The fundamental challenge in estimating the seismic vulnerability is to have a systematic understanding of all potential earthquake related losses.With this objective,the current study deals with evaluating the seismic vulnerability of Sylhet district of Bangladesh.Method:A multi-criteria decision-making approach such as the analytical hierarchy process(AHP)has been used in this study to estimate the earthquake vulnerability.For the assessment of three scenarios namely social,structural,and physical distance vulnerabilities,several criteria have been chosen in order to fully identify the risk of earthquake.Findings:The study uncovers the vulnerable areas of Sylhet district.It is revealed that in terms of social vulnerability,9%area of Sylhet district is under very high,55%high,15%moderate,17%low,and 4%is under very low vulnerable zone.Structural vulnerability represents that 9%of the district area is under the very high vulnerability category,48%high,31%moderate,4%low,and 8%falls under the very low category zone,whereas physical distance vulnerability comes up with a result that 23%,38%,23%,7%,and 9%of the total area fall into very high,high,moderate,low,and very low categories,respectively.Interpretation:The current work on seismic vulnerability assessment might be useful in reducing the risk and minimizing the losses due to earthquake.
基金The Fund for Building World-class Universities(disciplines)of Renmin University of China(2019)
文摘This study used remote sensing and GIS to analyze the landscape pattern changes in the Yancheng Nature Reserve from 1983 to 2018,established an evaluation index system based on the regional natural-socio-economic complex ecosystem security pattern,and then analyzed the spatial characteristics of ecological security changes and discusses reasons for these changes.The results show that the landscape pattern changed dramatically from natural landscape to a mixture of natural landscape and artificial landscape from 1983 to 2018 due to the intensification of human activities.At present,the ecological security status of the protected areas is not optimistic.From the perspective of the survival status of red-crowned cranes,the protected areas are suitable.However,due to the increase of human activities and policy adjustments,the habitat of red-crowned cranes is fragmented.The red-crowned crane currently gathers in localized areas such as the core area and the buffer zone.We should pay more attention to management,policy development and the environmental awareness of local residents.At the same time,it is necessary to reduce the intensity of human activities within the reserve.
基金funded by the National Key R&D Program of China(Grant No.2018YFB1700700)the National Natural Science Foundation of China(Grant Nos.51935009 and 51821093).
文摘Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build orientation is crucial in AM because it affects the as-built part,including its part accuracy,surface roughness,support structure,and build time and cost.A mechanical part is usually composed of multiple surface features.The surface features carry the production and design knowledge,which can be utilized in SLM fabrication.This study proposes a method to determine the build orientation of multi-feature mechanical parts(MFMPs)in SLM.First,the surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives.Second,the estimation models of involved optimization objectives are established,and a set of alternative build orientations(ABOs)is further obtained by many-objective optimization.Lastly,a multi-objective decision making method integrated by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to select an optimal build orientation from those ABOs.The weights of the feature groups and considered objectives are achieved by a fuzzy analytical hierarchy process.Two case studies are reported to validate the proposed method with numerical results,and the effectiveness comparison is presented.Physical manufacturing is conducted to prove the performance of the proposed method.The measured average sampling surface roughness of the most crucial feature of the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method are 15.82,10.84,and 10.62μm,respectively.The numerical and physical validation results demonstrate that the proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM.
文摘Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only immense economic importance but also ecological significance.The purpose of the study was to map the landslide-prone areas along KKH using two different techniquesAnalytical Hierarchy Process(AHP)and Scoops 3 D model.The causative parameters for running AHP include the lithology,presence of thrust,land use land cover,precipitation,and Digital Elevation Model(DEM)derived variables(slope,curvature,aspect,and elevation).The AHP derived final landslide susceptibility map was classified into four zones,i.e.,low,moderate,high,and extremely high.Over 80%of the study area falls under the moderate(43%)and high(40%)landslide susceptible zones.To assess the slope stability of the study area,the Scoops 3 D model was used by integrating with the earthquake loading data.The results of the limit equilibrium analysis categorized the area into four groups(low,moderate,high,and extremely high mass)of slope failure.The areas around Main Mantle Thrust(MMT)including Dubair,Jijal,and Kohistan regions,had high volumes of potential slope failures.The results from AHP and Scoops 3 D techniques were validated with the landslides inventory record of the Geological Survey of Pakistan and Google Earth.The results from both the techniques showed similar output that coincides with the known landslides areas.However,Scoops 3 D provides not only susceptible zones but also the range of volume of the potential slope failures.Further,these techniques could be used in other mountainous areas,which could help in the landslide mitigation measures.