Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
现有高级辅助驾驶系统(Advanced Driver Assistance Systems,ADAS)功能不断增多且系统复杂性不断提高,不可避免带来了预期功能安全(Safety of the Intended Functionality,SOTIF)问题。触发条件的识别与生成是预期功能安全活动中重要的...现有高级辅助驾驶系统(Advanced Driver Assistance Systems,ADAS)功能不断增多且系统复杂性不断提高,不可避免带来了预期功能安全(Safety of the Intended Functionality,SOTIF)问题。触发条件的识别与生成是预期功能安全活动中重要的一环,然而现有对触发条件识别仅借助系统过程理论分析方法(System Theoretic Process Analysis,STPA)进行分析,未充分考虑系统功能状态转换中存在的问题。本文以知识驱动的方式构建触发条件识别机制,将STPA及有限状态机(Finite State Machine,FSM)理论融合构建拓展型系统控制结构,针对拓展型控制架构及功能状态转换进行安全分析,根据系统存在的功能局限及人为误用,完成触发条件的识别、生成、规范化描述、分类及标签化。最后将本文提出的触发条件生成机制应用于集成式巡航辅助系统(Integrated Cruise Assistance,ICA),得到了该系统的触发条件及其分类,并将本文所提出的生成机制与现有相关触发条件生成方法进行对比分析,证明了本机制的实用性、可行性及有效性。展开更多
New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is stil...New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is still a challenge. In this paper, the conception, development and validation of an automotive radar raw data sensor model is shown. For the implementation, the Unreal VR engine developed by Epic Games is used. The model consists of a sending antenna, a propagation and a receiving antenna model. The microwave field propagation is simulated by a raytracing approach. It uses the method of shooting and bouncing rays to cover the field. A diffused scattering model is implemented to simulate the influence of rough structures on the reflection of rays. To parameterize the model, simple reflectors are used. The validation is done by a comparison of the measured radar patterns of pedestrians and cyclists with simulated values. The outcome is that the developed model shows valid results, even if it still has deficits in the context of performance. It shows that the bouncing of diffuse scattered field can only be done once. This produces inadequacies in some scenarios. In summary, the paper shows a high potential for real time simulation of radar sensors by using ray tracing in a virtual reality.展开更多
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.
文摘现有高级辅助驾驶系统(Advanced Driver Assistance Systems,ADAS)功能不断增多且系统复杂性不断提高,不可避免带来了预期功能安全(Safety of the Intended Functionality,SOTIF)问题。触发条件的识别与生成是预期功能安全活动中重要的一环,然而现有对触发条件识别仅借助系统过程理论分析方法(System Theoretic Process Analysis,STPA)进行分析,未充分考虑系统功能状态转换中存在的问题。本文以知识驱动的方式构建触发条件识别机制,将STPA及有限状态机(Finite State Machine,FSM)理论融合构建拓展型系统控制结构,针对拓展型控制架构及功能状态转换进行安全分析,根据系统存在的功能局限及人为误用,完成触发条件的识别、生成、规范化描述、分类及标签化。最后将本文提出的触发条件生成机制应用于集成式巡航辅助系统(Integrated Cruise Assistance,ICA),得到了该系统的触发条件及其分类,并将本文所提出的生成机制与现有相关触发条件生成方法进行对比分析,证明了本机制的实用性、可行性及有效性。
文摘New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is still a challenge. In this paper, the conception, development and validation of an automotive radar raw data sensor model is shown. For the implementation, the Unreal VR engine developed by Epic Games is used. The model consists of a sending antenna, a propagation and a receiving antenna model. The microwave field propagation is simulated by a raytracing approach. It uses the method of shooting and bouncing rays to cover the field. A diffused scattering model is implemented to simulate the influence of rough structures on the reflection of rays. To parameterize the model, simple reflectors are used. The validation is done by a comparison of the measured radar patterns of pedestrians and cyclists with simulated values. The outcome is that the developed model shows valid results, even if it still has deficits in the context of performance. It shows that the bouncing of diffuse scattered field can only be done once. This produces inadequacies in some scenarios. In summary, the paper shows a high potential for real time simulation of radar sensors by using ray tracing in a virtual reality.