Using value distribution theory and techniques in several complex variables,we investigate the problem of existence of m components-admissible solutions of a class of systems of higher-order partial differential equat...Using value distribution theory and techniques in several complex variables,we investigate the problem of existence of m components-admissible solutions of a class of systems of higher-order partial differential equations in several complex variables and estimate the number of admissible components of solutions.Some related results will also be obtained.展开更多
本文主要目的是利用值分布理论研究复高阶微分方程(Ω(z,ω)/ω~k0(ω')~k1…(ω^(n)~kn)~m=aω~p+sum from j=0 to x b_j(z)ω~j(p≥m)亚纯允许解的存在性问题.证明了一个在适当的条件下,该微分方程的亚纯解一定不是允许解的结果....本文主要目的是利用值分布理论研究复高阶微分方程(Ω(z,ω)/ω~k0(ω')~k1…(ω^(n)~kn)~m=aω~p+sum from j=0 to x b_j(z)ω~j(p≥m)亚纯允许解的存在性问题.证明了一个在适当的条件下,该微分方程的亚纯解一定不是允许解的结果.实例表明该文的结果是最佳的.展开更多
基金the National Natural Science Foundation of China(No.10471065)the Natural Science Foundation of Guangdong Province(No.04010474)
文摘Using value distribution theory and techniques in several complex variables,we investigate the problem of existence of m components-admissible solutions of a class of systems of higher-order partial differential equations in several complex variables and estimate the number of admissible components of solutions.Some related results will also be obtained.
文摘本文主要目的是利用值分布理论研究复高阶微分方程(Ω(z,ω)/ω~k0(ω')~k1…(ω^(n)~kn)~m=aω~p+sum from j=0 to x b_j(z)ω~j(p≥m)亚纯允许解的存在性问题.证明了一个在适当的条件下,该微分方程的亚纯解一定不是允许解的结果.实例表明该文的结果是最佳的.