时空轨迹伴随模式是数据挖掘领域的一项重要研究内容。CMC(Coherent Moving Cluster)算法是一种经典的时空轨迹伴随模式挖掘算法,该算法引入了DBSCAN算法以挖掘出任意形状的簇。但是,DBSCAN聚类算法极耗时,导致CMC算法的时间效率较低。...时空轨迹伴随模式是数据挖掘领域的一项重要研究内容。CMC(Coherent Moving Cluster)算法是一种经典的时空轨迹伴随模式挖掘算法,该算法引入了DBSCAN算法以挖掘出任意形状的簇。但是,DBSCAN聚类算法极耗时,导致CMC算法的时间效率较低。因此提出了一种基于网格索引的时空轨迹伴随模式挖掘算法MAP-G(Mining Adjoint Pattern of spatial-temporal trajectory based on the Grid index)。实验表明,MAP-G算法不仅比CMC算法具有更高的时间效率,而且能够过滤掉部分不正确的结果,因此结果也更加准确。展开更多
文摘时空轨迹伴随模式是数据挖掘领域的一项重要研究内容。CMC(Coherent Moving Cluster)算法是一种经典的时空轨迹伴随模式挖掘算法,该算法引入了DBSCAN算法以挖掘出任意形状的簇。但是,DBSCAN聚类算法极耗时,导致CMC算法的时间效率较低。因此提出了一种基于网格索引的时空轨迹伴随模式挖掘算法MAP-G(Mining Adjoint Pattern of spatial-temporal trajectory based on the Grid index)。实验表明,MAP-G算法不仅比CMC算法具有更高的时间效率,而且能够过滤掉部分不正确的结果,因此结果也更加准确。