期刊文献+

基于OPTICS聚类和关联分析的轨迹伴随模式分析 被引量:4

Trajectory Adjoint Pattern Analysis Based on OPTICS Clustering and Association Analysis
下载PDF
导出
摘要 目前,主流的轨迹伴随模式挖掘方法大多是对连续短时间内轨迹的一次挖掘,忽略了前后非连续时间上的关联分析,因此对隐含伴随模式的挖掘不准确。本文对轨迹伴随模式进行了分析,并提出一种结合密度聚类和关联分析的伴随模式分析方法。该方法首先挖掘轨迹数据中的局部模式簇,通过非连续时间片局部模式簇的关联分析,优化挖掘结果。实验结果表明本文方法可以有效地挖掘轨迹中的伴随模式。 At present,the mainstream trajectory adjoint pattern mining methods are usually for short time analysis,and most of them mine trajectory data once,rarely taking into account the relevant analysis between before and after discontinuous t im e,so the implicit adjoint pattern mining is not accurate. This paper analyzes the trajectory adjoint pattern,and ppattern mining method based on density clustering and association analysis. F irs t ly,the local pattern clusters in the trajectory data are mined,and the mining results are optimized by the association analysis of the local pattern clusters in discontinuous timeslices. Experimental results showthat the method can effectively and accurately mine the adjoint model of the trajectory.
出处 《计算机与现代化》 2017年第12期82-87,共6页 Computer and Modernization
关键词 目标轨迹数据 伴随模式挖掘 密度聚类 关联分析 群体运动模式 target trajectory data adjoint pattern mining density clustering association analysis population movement model
  • 相关文献

参考文献7

二级参考文献108

  • 1匡泰,朱清新,孙跃.FCM算法用于灰度图像分割的初始化方法的研究[J].计算机应用,2006,26(4):784-786. 被引量:15
  • 2修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 3毛国君.数据挖掘原理与算法[M].北京:清华大学出版社,2009.6. 被引量:2
  • 4中国互联网络发展状况统计报告[R].2014. 被引量:18
  • 5Gidofalvi G, Pedersen T B. Mining long, sharable patterns in trajectories of moving objects[J]. Geoinformatiea, 2009,13 (1) :27-55. 被引量:1
  • 6Zheng Y+ Xie X. Learning travel recommendations from user-generated GPS traces [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011,2(1) :2. 被引量:1
  • 7Lee W H, Tseng S S, Tsai S H. Knowledge based real time travel time prediction system for urban network [J]. Expert Systems with Applications, 2009, 36(3):4239-4247. 被引量:1
  • 8Kitamoto A. Spatio-temporal data mining for typhoon image collection [J]. Journal of Intelligent Information Systems, 2002,19(1) :25-41. 被引量:1
  • 9Zheng Y, Liu F, Hsieh H P. U-Air: When urban air quality inference meets big data[C]//The 19th ACM SIGKDD Interna+ tional Conference on Knowledge Discovery and Data Mining. Chicago, IL, USA: ACM, 2013:1436 -1444. 被引量:1
  • 10Pan G, Qi G, Zhang W S, et al. Trace analysis and mining for smart cities: Issues, methods, and applieations[J]. IEEE Communications Magazine, 2013,51(6) :120-126. 被引量:1

共引文献231

同被引文献43

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部