期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于模型诊断技术的神经网络实现方法 被引量:4
1
作者 马纪明 万蔚 王法岩 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第2期178-183,共6页
针对基于模型的故障诊断流程中故障检测和故障识别两个关键问题,提出了一种基于神经网络的实现方法.首先利用BP神经网络进行参数估计,并结合系统模型进行故障检测;然后采用ART2神经网络进行数据聚类,并基于聚类结果进行系统故障识别;最... 针对基于模型的故障诊断流程中故障检测和故障识别两个关键问题,提出了一种基于神经网络的实现方法.首先利用BP神经网络进行参数估计,并结合系统模型进行故障检测;然后采用ART2神经网络进行数据聚类,并基于聚类结果进行系统故障识别;最后,设计实现了基于BP/ART2神经网络的故障诊断系统.基于BP神经网络的参数估计方法可以准确地估计诊断对象在不同状态下的参数,为故障检测提供有效依据;基于ART2神经网络的数据聚类不仅可以识别对象的已知故障类型,还可以识别出未知故障,对先验信息较少的系统进行故障识别更具有效性.通过永磁直流电机故障诊断案例的应用,证明方法能具有一定的工程实用性. 展开更多
关键词 故障检测 BP神经网络 art2神经网络 参数估计 数据聚类
下载PDF
ART2神经网络的一种改进 被引量:2
2
作者 陈国灿 高茂庭 《计算机工程与应用》 CSCD 2014年第18期137-141,187,共6页
传统ART2神经网络在聚类过程中模式的匹配度量仅仅与模式的相位信息相关,这种匹配度量忽略了模式的幅度信息的作用,在对相位信息相同而幅度信息不同的两个簇进行聚类时,效果很差;同时,它还存在输入域限制的问题。针对这些不足之处,提出... 传统ART2神经网络在聚类过程中模式的匹配度量仅仅与模式的相位信息相关,这种匹配度量忽略了模式的幅度信息的作用,在对相位信息相同而幅度信息不同的两个簇进行聚类时,效果很差;同时,它还存在输入域限制的问题。针对这些不足之处,提出了一种改进的ART2神经网络,在输入模式进入网络学习过程中,保存其幅值信息,放宽对负实数的非线性转换,并考虑输入模式到各个簇的中心点的最短距离,同时增加一个阈值对离群点进行判定,消除了离群点对聚类结果的影响。实验验证,改进的ART2网络在对相同相位的两个簇聚类时,性能明显优于传统的ART2网络。 展开更多
关键词 自适应共振理论(art)2网络 聚类 相位信息 幅度信息
下载PDF
二维空间聚类的树ART2模型 被引量:1
3
作者 余莉 李佳田 +2 位作者 李佳 段平 王华 《计算机应用》 CSCD 北大核心 2011年第5期1328-1330,共3页
ART2网络是一种著名的聚类方法,已实际应用于诸多领域,其作用于二维空间数据,不仅存在模式漂移和向量幅度信息缺失的问题,而且难以适应不规则形态分布的空间数据的聚类。提出了一种树ART2网络模型(TART2),通过长期记忆(LTM)模式的调整... ART2网络是一种著名的聚类方法,已实际应用于诸多领域,其作用于二维空间数据,不仅存在模式漂移和向量幅度信息缺失的问题,而且难以适应不规则形态分布的空间数据的聚类。提出了一种树ART2网络模型(TART2),通过长期记忆(LTM)模式的调整和向量幅度信息的学习,使ART2网络保持了带空间距离约束的旧模式记忆;引入树结构优化,降低了警戒参数设置的主观要求,减少了模式交混现象的发生。对比实验结果表明,TART2网络更适用于带状分布的空间数据聚类,具有较高的可塑性和自适应性。 展开更多
关键词 空间聚类 art2神经网络 模式交混 数据粒度 树结构
下载PDF
基于直觉模糊ART神经网络的群事件检测方法 被引量:1
4
作者 林剑 雷英杰 《计算机应用》 CSCD 北大核心 2009年第1期130-131,142,共3页
描述了态势评估系统中的目标编群问题、目标群处理流程和群事件的检测。结合直觉模糊贴近度理论,构造了直觉模糊ART神经网络。设计了网络的运行机制和网络权值向量的学习机制。给出了一个具体实例,检验了直觉模糊ART神经网络的目标编群... 描述了态势评估系统中的目标编群问题、目标群处理流程和群事件的检测。结合直觉模糊贴近度理论,构造了直觉模糊ART神经网络。设计了网络的运行机制和网络权值向量的学习机制。给出了一个具体实例,检验了直觉模糊ART神经网络的目标编群效果,为群事件检测提供了一条有效途径。 展开更多
关键词 直觉模糊集 自适应共振神经网络 群事件
下载PDF
基于Fuzzy-ART神经网络的红外弱小目标检测 被引量:5
5
作者 陈炳文 王文伟 秦前清 《系统工程与电子技术》 EI CSCD 北大核心 2012年第5期857-863,共7页
针对现有背景抑制算法未能有效抑制背景而导致目标检测率低的问题,提出了一种基于模糊自适应共振理论(fuzzy adaptive resonance theory,Fuzzy-ART)神经网络的弱小目标检测算法。首先,采用Fuzzy-ART神经网络结合Robinson警戒环技术,建... 针对现有背景抑制算法未能有效抑制背景而导致目标检测率低的问题,提出了一种基于模糊自适应共振理论(fuzzy adaptive resonance theory,Fuzzy-ART)神经网络的弱小目标检测算法。首先,采用Fuzzy-ART神经网络结合Robinson警戒环技术,建立自适应局部空间背景模型,并以此分析像素点的背景模糊隶属度来抑制背景杂波;然后依据目标与残留背景杂波的空间特征采用模板均差法来突显目标,并提出基于行列模糊聚类的自适应分割算法来提取候选目标;最后结合目标的运动连续性进行多帧轨迹关联从而检测出真实目标。理论分析与实验结果表明,该算法能随背景的局部情况来自适应调节空间背景模型,从而自适应抑制背景杂波、突显目标,能有效提高信噪比,检测出弱小目标。 展开更多
关键词 模式识别 弱小目标检测 模糊自适应共振理论神经网络 Robinson警戒环 自适应分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部